AD-A200 117



# NAVAL POSTGRADUATE SCHOOL Monterey, California



# THESIS

MINE/COUNTERMINE BASIS OF ISSUE OPTIMIZATION PLAN

by

Thomas D. Pijor June 1988

Thesis Advisor:

Samuel H. Parry

Approved for public release; distribution is unlimited



88 11 08 033

| REPORT DOCUMENTATION PAGE AD ABBILLY                                                                                                                |                                                                                                                     |                                                        |                                                 |                              |                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|------------------------------|---------------------------|--|
| 1a. REPORT SECURITY CLASSIFICATION Unclassified                                                                                                     | 16 RESTRICTIVE MARKINGS                                                                                             |                                                        |                                                 |                              |                           |  |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                                                                                               |                                                                                                                     |                                                        | AVAILABILITY OF                                 |                              |                           |  |
| 2b. DECLASSIFICATION / DOWNGRADING SCHEDU                                                                                                           | LE                                                                                                                  | Approved for Public Release; distribution is unlimited |                                                 |                              |                           |  |
| 4. PERFORMING ORGANIZATION REPORT NUMBE                                                                                                             | R(S)                                                                                                                | 5. MONITORING ORGANIZATION REPORT NUMBER(S)            |                                                 |                              |                           |  |
|                                                                                                                                                     |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| 6a. NAME OF PERFORMING ORGANIZATION                                                                                                                 | 6b. OFFICE SYMBOL (If applicable)                                                                                   | 7a. NAME OF MONITORING ORGANIZATION                    |                                                 |                              |                           |  |
| Naval Postgraduate School                                                                                                                           | 55                                                                                                                  | Naval Postgraduate School                              |                                                 |                              |                           |  |
| 6c. ADDRESS (City, State, and ZIP Code)                                                                                                             |                                                                                                                     | 7b. ADDRESS (Cit                                       | y, State, and ZIP (                             | Code)                        |                           |  |
| Monterey, California 9394                                                                                                                           | 3-5000                                                                                                              | Monterey                                               | , Californ                                      | nia 93943                    | 5-5000                    |  |
| 8a. NAME OF FUNDING SPONSORING ORGANIZATION                                                                                                         | 8b. OFFICE SYMBOL<br>(If applicable)                                                                                | 9. PROCUREMENT                                         | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER |                              |                           |  |
| 8c. ADDRESS (City, State, and ZIP Code)                                                                                                             |                                                                                                                     | 10. SOURCE OF F                                        | UNDING NUMBER                                   | \$                           |                           |  |
|                                                                                                                                                     |                                                                                                                     | PROGRAM<br>ELEMENT NO.                                 | PROJECT<br>NO:                                  | TASK<br>NO                   | WORK UNIT<br>ACCESSION NO |  |
| 11. TITLE (Include Security Classification)                                                                                                         |                                                                                                                     | <u> </u>                                               |                                                 | <u> </u>                     |                           |  |
| MINE/COUNTERMINE BASIS OF                                                                                                                           | ISSUE OPTIMI                                                                                                        | ZATION PLA                                             | N                                               |                              |                           |  |
| 12. PERSONAL AUTHOR(S) Pijor, Thoma                                                                                                                 | as D.                                                                                                               |                                                        |                                                 | <del></del>                  |                           |  |
| 13a. TYPE OF REPORT Master's Thesis FROM                                                                                                            |                                                                                                                     | 14. DATE OF REPO<br>1988 June                          | RT (Year, Month, I                              | Day) 15 PAG                  | E COUNT<br>161            |  |
| 16. SUPPLEMENTARY NOTATION The view and do not reflect the of:                                                                                      | ws expressed                                                                                                        | in this th                                             | esis are t                                      | hose of                      | the author                |  |
| Defense or the U.S. Govern                                                                                                                          | nment.                                                                                                              |                                                        |                                                 |                              |                           |  |
| 17. COSATI CODES                                                                                                                                    | 18 SUBJECT TERMS (<br>Mine, Counte                                                                                  | Continue on reverse<br>ermine, Bre                     | e if necessary and<br>eaching, Hi               | identify by blo<br>igh Resol | ock number)<br>Lution     |  |
| Simulation, Musefields, Combat simulation,                                                                                                          |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| Thoses. (50W)                                                                                                                                       |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)                                                                        |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| be seriously threatened by                                                                                                                          | The mobility and effivtive employment of tanks ina future conflict may be seriously threatened by enemy land mines. |                                                        |                                                 |                              |                           |  |
| This thesis presents a high resolution stochastically based simulation                                                                              |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| to be used in the evaluation of measures of effectiveness to determine the                                                                          |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| optimal basis of issue of mine/countermine equipment. A discussion of the types of breaching equipment and the tactics involved is used to provide  |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| background for the simulation.                                                                                                                      |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| Several measures of effectiveness are used to determine how the various configurations of breaching equipment affect the battle and battle outcome. |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| Consider the battle and battle outcome.                                                                                                             |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| MARIA A SA                                                                                                            |                                                                                                                     |                                                        |                                                 |                              |                           |  |
|                                                                                                                                                     |                                                                                                                     |                                                        |                                                 |                              |                           |  |
| 20 DISTRIBUTION / AVAILABILITY OF ABSTRACT  SAME AS F                                                                                               | RPT DTIC USERS                                                                                                      | 21. ABSTRACT SECURITY CLASSIFICATION Unclassified      |                                                 |                              |                           |  |
| 22a NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                  | 22b TELEPHONE (Include Area Code)   ∠2c OFFICE SYMBOL                                                               |                                                        |                                                 |                              |                           |  |
| Prof. S. H. Parry,                                                                                                                                  | PR edition may be used un                                                                                           | 408-646-                                               | 2779                                            | 55Pv                         |                           |  |

Approved for public release; distribution is unlimited

Mine/Countermine Basis of Issue Optimization Plan

bу

Thomas D. Pijor
Captain, United States Army
B.S., United States Military Academy, 1978

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL June 1988

Approved by:

Samuel M. Fabry, These Advisor

Bard K. Mansager, Second Reader

Peter Purdue, Chairman
Department of Operations Research

James M. Fremgen
Acting Dean of Information and Policy Sciences

#### **ABSTRACT**

The mobility and effective employment of tanks in a future conflict may be seriously threatened by enemy land mines.

This thesis presents a high resolution stochastically based simulation to be used in the evaluation of measures of effectiveness to determine the optimal basis of issue of mine/countermine equipment. A discussion of the types of breaching equipment and the tactics involved is used to provide background for the simulation.

Several measures of effectiveness are used to determine how the various configurations of breaching equipment affect the battle and battle outcome.



| Accession For      |               |       |  |  |  |  |
|--------------------|---------------|-------|--|--|--|--|
| NTIS               | GRA&I         |       |  |  |  |  |
| DTIC 7             | CAB           |       |  |  |  |  |
| Unanno             | Unamiounced   |       |  |  |  |  |
| Justif             | Justification |       |  |  |  |  |
|                    |               |       |  |  |  |  |
| Ву                 |               |       |  |  |  |  |
| Distr              | Distribution/ |       |  |  |  |  |
| Availability Codes |               |       |  |  |  |  |
|                    | Avail a       | no/en |  |  |  |  |
| Dist               | Speci         | al    |  |  |  |  |
| \ \                |               |       |  |  |  |  |
| 1/1                |               |       |  |  |  |  |
| M                  |               |       |  |  |  |  |

#### THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.

#### TABLE OF CONTENTS

| I.   | INT | RODUCTION                          | 1  |
|------|-----|------------------------------------|----|
|      | A.  | BACKGROUNI                         | 1  |
|      | в.  | PURPOSE AND GCALS                  | 2  |
|      | c.  | METHODOLOGY                        | 3  |
| II.  | NAT | URE OF THE COUNTERMINE PROBLEM     | 6  |
|      | A.  | CONCEPT OF OPERATIONS AND MOBILITY | 6  |
|      | В.  | TACTICAL RESPONSES TO MINEFIELDS   | 9  |
|      |     | 1. The Bypass                      | 9  |
|      |     | 2. The Breach                      | 9  |
|      |     | 3. The Force Through               | 10 |
|      | c.  | TYPES OF BREACHING EQUIPMENT       | 10 |
|      | D.  | MEASURES OF EFFECTIVENESS          | 12 |
| III. | MOD | EL DEVELOPMENT                     | 15 |
|      | A.  | TACTICS SCENARIO                   | 19 |
|      | в.  | INITIALIZATION AND DATA INPUT      | 21 |
|      | c.  | MINEFIELD SETUP MODULE             | 25 |
|      | D.  | UNIT STATUS MODULE                 | 27 |
|      | E.  | UNIT LOCATION MODULE               | 28 |
|      | F.  | MOVEMENT MODULE                    | 29 |
|      | G.  | MINEFIELD MODULE                   | 34 |
|      | н.  | INITIAL ENTRY INTO A MINEFIELD     | 34 |
|      | ı.  | BREACHING OPERATIONS               | 38 |
|      | J.  | FIRE AND DETECTION MODULES         | 44 |
|      | ĸ.  | DETECTION MODULE                   | 45 |

|        | L.     | DIRECT             | FIRE        | MODUI     | ΣΕ        | • • • • • | • • • • • | • • • • • | • • • | • • | 48  |
|--------|--------|--------------------|-------------|-----------|-----------|-----------|-----------|-----------|-------|-----|-----|
| IV.    | OUTE   | PUT ANA            | LYSIS       | • • • • • |           | • • • • • | • • • • • |           |       | • • | 50  |
|        | A.     | BASIC              | RESUL       | TS        |           | • • • • • | • • • • • | • • • •   |       | • • | 50  |
|        | В.     | EVALUA             | TION        | OF MOI    | Es        | • • • • • | • • • • • | • • • •   |       | • • | 52  |
|        | c.     | SUMMAR             | Y OF        | RESUL     | rsmo      | DEL O     | NE        | • • • • • |       | • • | 59  |
|        | D.     | SENSIT MODEL.      |             |           |           |           |           |           |       | • • | 59  |
|        | E.     | FINAL              | CONCL       | USIONS    | S         | • • • • • | • • • • • | • • • • • |       | • • | 62  |
| v.     |        | MARY, F<br>LIZATIO |             |           |           |           |           | ••••      |       | ••  | 93  |
|        | A.     | SUMMAR             | Y           | • • • • • | • • • • • |           |           | • • • • • |       | • • | 93  |
|        | B.     | FUTURE             | ENHA        | NCEMEI    | NTS       | • • • • • |           | • • • • • |       | • • | 93  |
|        | c.     | UTILIZ             | ATION       | • • • • • | • • • • • |           |           | • • • • • |       | • • | 94  |
| APPENI | X XIC  | A: DEF             | 'INITI      | ON OF     | MODE      | ONE       | VARIA     | BLES.     |       | • • | 96  |
| APPENI | XIC    | B: COM             | PUTER       | PROGI     | RAM L     | STING     |           | • • • • • |       | 1   | .03 |
| APPENI | ) XIC  | C: DAT             | A FIL       | ES TO     | SUPPO     | ORT TH    | E PRO     | GRAM.     |       | 1   | .36 |
| LIST ( | OF RI  | EFERENC            | ES          | • • • • • | • • • • • | • • • • • | • • • • • | • • • • • |       | 1   | 47  |
| TNITTI | AT. DI | T C T D T D I I    | יע ר די חיי | T.TCm     |           |           |           |           |       | 1   | 40  |

#### LIST OF TABLES

| 1. | VEHICLE LOSSES, TIME AND RANGE OUTPUT FILE64        |
|----|-----------------------------------------------------|
| 2. | MINEFIELD STATUS/DEFENSIVE POSTURE TIME OUTPUT FILE |
| з. | NO MINEFIELD/DIRECT FIRE STATISTICS66               |
| 4. | PROBABILITY OF MINEFIELDS/DIRECT FIRE STATISTICS67  |
| 5. | 100% MINEFIELDS/DIRECT FIRE STATISTICS68            |
| 6. | 100% MINEFIELDS/NO DIRECT FIRE STATISTICS69         |
| 7. | MODEL 2 STATISTICS81                                |

#### LIST OF FIGURES

| 1.  | Functional Simulation and Analysis Model 4          |
|-----|-----------------------------------------------------|
| 2.  | Model Flowchart16                                   |
| 3.  | Operation Overlay20                                 |
| 4.  | Unit Formations23                                   |
| 5.  | Movement Flowchart30                                |
| 6.  | Network Supporting Movement Routine31               |
| 7.  | Determination of Element X,Y Coordinates33          |
| 8.  | Minefield Logic Flowchart35                         |
| 9.  | Mineroller Breaching Flowchart41                    |
| 10. | Mineplow Breaching Flowchart42                      |
| 11. | Red Detection Flowchart46                           |
| 12. | Model 1 Measure of Effectiveness 170                |
| 13. | Model 1 Measure of Effectiveness 271                |
| 14. | Model 1 Measure of Effectiveness 372                |
| 15. | Model 1 Measure of Effectiveness 473                |
| 16. | Model 1 Measure of Effectiveness 574                |
| 17. | Model 1 Measure of Effectiveness 6                  |
| 18. | Model 1 Measure of Effectiveness 776                |
| 19. | Model 1 Measure of Effectiveness 8                  |
| 20. | Model 1 Measure of Effectiveness 9                  |
| 21. | Model 1 Measure of Effectiveness 1079               |
| 22. | Model 1 Measure of Effectiveness 1180               |
| 23. | Model 1 versus Model 2 Measure of Effectiveness 182 |
| 24. | Model 1 versus Model 2 Measure of Effectivess 283   |

| 25. | Model 1<br>Measure | of Effectiveness                   | 384  |
|-----|--------------------|------------------------------------|------|
| 26. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 485  |
| 27. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 586  |
| 28. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 687  |
| 29. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 788  |
| 30. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 889  |
| 31. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 990  |
| 32. | Model 1<br>Measure | versus Model 2<br>of Effectiveness | 1091 |
| 33. | Model 1<br>Measure | versus Model 2 of Effectiveness    | 1192 |

#### I. INTRODUCTION

#### A. BACKGROUND

The United States Army currently possesses the most advanced tank in the world, the M1 Main Battle Tank. able to move faster, shoot more accurately, and maneuver better than any comparable system. Yet the emphasis on mobility and the high degree of technical sophistication which we have placed on the M1 may be negated by even a World War II vintage anti-tank mine. The use and effectiveness of landmines against tanks have substantially increased since World War I, while our ability to counter the landmine threat has not changed dramatically in the Proponency disagreements appear to have last 40 years. hindered the thorough formulation and development of a comprehensive mine clearing system while the search for and development of one device that would effectively perform all countermine functions has been understandably futile.

While there have been substantial advances in the development of new types of mines and minelaying equipment, the methods of detecting and clearing mines still leave much to be desired [Ref. 1]. There are still very few mine detectors which will detect nonmetallic mines, the most likely type to be found on the battlefield today. Once the mines have been detected they must be cleared or bypassed. The United States has been developing several systems to

enable units to breach complex obstacles. Two of these are the track width mine plow (TWMP) and the track width mine roller (TWMR). Both the plow and the roller have inherent strengths and weaknesses, and neither of them is totally effective.

#### B. PULPOSE AND GOALS

Although detailed combat models (such as JANUS or CASTFOREM) are heavily used at the tactical level, some analysts and users have doubts about the use of this kind of model when evaluating the impact of a new piece of equipment entering the inventory. Detailed combat models are costly to build, costly to run, are quite demanding in data base requirements, not easily modified, essentially impossible to use for sensitivity analysis and other parametric studies, and not easily communicated to decision makers.

On the other hand, a model can be built rather quickly and inexpensively in order to answer questions of a particular nature. The model is written with specific goals in mind and specific output desired. Development of that type of model is the subject of this thesis. It examines various mixes of the TWMP and the TWMR with the goal of determining the optimal type and number of systems that can effectively be used to breach a series of minefields by an armor battalion. The countermine mix must provide effective mine neutralization in the breached lanes

for the assault with minimum loss of momentum and time, and minimize breaching and assault force losses due to mine detonations.

By constructing the model in this fashion, the number of variables that could impact on the output is kept to a minimum and the output and analysis will provide results with an acceptable degree of accuracy.

#### C. METHODOLOGY

Through the use of a high resolution combat simulation using clearing and survivability data, output is generated which is analyzed and then evaluated under various measures of effectiveness which have been developed to provide comparisons between different force and equipment configurations. Figure 1 demonstrates the process by which the evaluation will take place. Entering the configuration or inventory, the minefield parameters and enemy actions, and the assault force's actions and decisions into the simulation model results in an exiting vehicle inventory, transit times and unit status codes which are then used to evaluate the desired measures of effectiveness.

In Chapter 2, the Concepts of Mobility and Operations are discussed. Additionally, a discussion of the options available to a unit commander in countering are examined in detail. The characteristics of the breaching equipment,

### Functional Simulation and Analysis Model



Figure 1. Functional Simulation and Analysis Model

their normal employment and the development of the measures of effectiveness used to analyze the output from the simulation are examined.

In Chapter 3, the layout and flow of the simulation are discussed, along with detailed descriptions of the various modules that compose the model. The tactical scenario which was used in the model development and simulation is included.

Chapter 4 deals with the output analysis and evaluation of the measures of effectiveness used to determine the optimal force structure.

Finally, Chapter 5 provides recommendations for possible future enhancements to the model as well as possible utilizations of this model and other models of this type. In the appendices, variables used in the simulation are defined, the computer code is listed and described in detail, and the data files used in the simulation are presented.

#### II. NATURE OF THE COUNTERMINE PROBLEM

#### A. CONCEPT OF OPERATIONS AND MOBILITY

Mobility is oriented toward reducing or negating the effects of existing or reinforcing obstacles to improve movement of maneuver/fire units and movement of critical supplies [Ref. 2].

The concentration of forces and weapons at the critical time and place is a prerequisite for winning both offensive and defensive battles. The firepower and cross-country mobility offered by tanks make them the most important conventional battlefield weapon of today and the future. The overall mobility of the forces may be countered through the use of existing and reinforcing obstacles. Existing obstacles may be considered to be those natural or man made obstacles which currently exist on the battlefield. Reinforcing obstacles are specifically designed to impede the movement of enemy units and are constructed when possible to complement existing obstacles, friendly fires, and scheme of maneuver.

Obstacles are intended to be employed in depth along the expected enemy axis of advance with the intent of stopping, delaying, or redirecting enemy tanks to a location advantageous to the employment of anti-tank weapons. If the obstacles are properly employed they are likely to delay an enemy unit attempting to pass through them. A delay that occurs within the range of anti-tank weapons covering the obstacles is likely to significantly increase the effectiveness of those antitank weapons. The primary purpose of obstacles is to enhance the effectiveness of friendly fires, to delay or disrupt enemy formations, to allow the tactical commander to use economy of force, and to enable him to protect his flanks.

The Soviet Army places great emphasis on landmine warfare, and they possess rapid and effective means of both laying and breaching minefields. They are likely to use mines extensively in defensive and offensive operations. By doctrine, their minefields are located at the front of defensive positions and are covered by antitank and general supporting fires. Soviet minefields are employed to disrupt the enemy attack by causing vehicle casualties, reducing overall momentum of the attack, and forcing the enemy into confined areas. Minefields located within the main area of defense are employed to provide kill zones for anti-tank weapons and restrict enemy movement to designated areas where the concentrated fires of all weapons are focused on the attacking forces. They are not used with the idea of blocking or destroying the enemy force, but to reinforce natural obstacles, scare the enemy, divert his attention from the defender and influence his maneuver. [Ref. 3]

Mines are widely recognized as the most effective reinforcing obstacle. While other obstacles can only act passively on tanks, mines have proven themselves to be capable of destroying tanks by themselves. The achievement during the combined employment of anti-tank weapons and anti-tank mines of a greater number of casualties than would be possible by summing the casualty producing capabilities of each acting independently is commonly acknowledged and is referred to as a synergistic effect.

To counter this threat of decreased mobility, tank mounted countermine sets of plows and rollers will give a tank company limited capability to conduct hasty minefield breaches. The countermine mix must provide accurate identification of minefield encounters, provide effective mine neutralization in the breached lanes, provide lanes for the assault force with minimum loss of momentum and time, and minimize breaching and assault forces losses due to mine detonations [Ref. 4].

The roller/plow team has distinct limitations. The roller, by virtue of the fact that it always travels in contact with the ground, is constantly detecting and clearing a path immediately in front of the vehicle on which it is mounted [Ref. 4]. However, due to the weight of the device, the breaching vehicle's mobility is greatly reduced. Additionally, due to the roller's method of neutralizing mines by detonation, it cannot withstand the

rigors of constant breaching operations. The mine plows are not designed to detect mines but to clear a path directly in front of the plow tank once a minefield is encountered/ detected. Since the plow tank travels with the plow in the raised mode, the crew of the plow tank must be able to visually detect the minefield in order to determine when to employ the plow [Ref. 4].

#### B. TACTICAL RESPONSES TO MINEFIELDS

The offensive force commander must keep one principle in mind when a minefield is encountered: maintain the momentum of the offense. Obstacles must not stop or impede the movement for unusually long periods of time. The tactical commander has three alternatives when faced by an obstacle; he may breach, bypass, or "force through" the obstacle [Ref. 5].

#### 1. The Bypass

To conserve time and manpower, obstacles are bypassed whenever possible. However, if the enemy has employed the obstacles properly, they will be difficult to bypass. [Ref. 6]

#### 2. The Breach

A breach is conducted when the unit possesses the proper equipment to breach. Two methods of breaching may be employed: the assault breach or the deliberate breach.

[Ref. 6] We are concerned only with the assault breach.

The assault/hasty breach is done quickly during either a

hasty or deliberate attack. The main objective is speed in gaining the breach, since delays may be costly in terms of casualties due to direct fires covering the obstacle. With the mineplow and mineroller, it maybe quicker and easier to attempt a breach than to bypass.

#### 3. The Force Through

The "force through" or "bull" tactic is attempted when no other way to overcome the obstacle exists. The unit does not possess any breaching equipment and will drive through the minefield in hopes of clearing a path. Heavy losses are expected when this tactic is employed. [Ref. 7]

#### C. TYPES OF BREACHING EQUIPMENT

The track width mine roller (TRMR) is a 10 ton assembly consisting of two banks of rollers. The rollers detect mines by detonating them as it rolls over them. There is a dog bone and chain assembly between the two banks of rollers to activate any tilt rod mines which could cause a belly kill on the breaching vehicle. [Ref. 6] Mine rollers have the potential to provide countermine detection and neutralization only as long as the single impulse pressure fuze mine remains the predominant fuze type. [Ref. 8]

The track width mine plow (TRMP) weighs 3.5 tons and consists of two plow blades. The plow removes surface laid or buried mines from the path of the vehicle's tracks, the times penetrate the ground to dislodge buried mines and

bring them to the surface where they are cast aside. A dog bone and chain assembly is used to clear tilt rod mines in the same manner as the TWMR. [Ref. 9] It possesses the potential to provide effective mine clearing of surface laid mines and under certain terrain conditions, mines laid below the surface [Ref. 8].

Sweeping operations to clear a path through a minefield is carried out by the roller and plow sections simultaneously or by the roller section alone. When moving through a mined area, travel should be in as straight a line as possible and no sharp turns should be executed, otherwise a mine unearthed by the plow may pass under the tank's tracks. When choosing a movement route, it is desirable that this path lie along the smoothest possible course through the minefield. [Ref. 10] The best overall results are normally achieved when the two systems are used in tandem, with the roller leading until it detects (detonates) a mine. The plow then digs in and leads through the minefield, followed by the roller which proofs the lane. Once the minefield is passed, if further mines are anticipated, the roller resumes the lead. [Ref. 11] The company/team sized element conducting the hasty breach through a threat minefield and continuing on to seize the objective can effectively exert command and control of only one breach. [Ref. 4]

#### D. MEASURES OF EFFECTIVENESS

The measures of effectiveness concentrate on the principal purposes of countermine equipment which are to decrease the amount of time the unit is exposed in the attack, reduce delay time due to minefields, and to change the force ratio for the attackers. The MOEs are quantitative indicators of the equipment's ability to affect the battle outcome compared to various base case situations, (i.e. when the battlefield is void of obstacles and the battle outcome when the battlefield has minefields and the attacking unit does not possess any breaching/clearing equipment).

An integral factor in the determination of the number of breaching systems is the vulnerability of a specific device to direct or indirect fires, since the loss of a device (due to damage or failure) before or during the breach would require the employment of additional devices. Because of their relatively high degree of accuracy and standard coordinated employment with a minefield, direct fires are generally considered to be the predominant threat.

The final factor that must be considered in the MOE development is the expected reliability and survivability of the clearing or neutralizing device. This reliability denotes the probability of the device actually clearing or neutralizing a mine it encounters and the survivability of

the device is the ability to withstand the rigors of mine detonations which may be encountered when clearing the obstacle.

The primary question of how the number of pieces of breaching equipment affects the battle is best answered by measuring the number of casualties suffered by the attacking force. If the equipment accomplishes its mission, such as allowing a rapid breaching of obstacles, there should be a decrease in the number of casualties due to both mine detonations and direct fire kills, or the minimum range between opposing forces should have decreased.

The MOEs are as follows:

- 1. percent of blue casualties due to direct fire.
- 2. percent of blue casualties due to mine detonations
- percent of blue casualties due to both mine detonations and direct fire.
- 4. number of blue casualties due to mines/number of pieces of breaching equipment available.
- 5. number of blue casualties due to direct fire/number of pieces of breaching equipment available.
- number of total blue casualties/number of pieces of breaching equipment available.
- 7. Number units going to defensive posture over 50 repetitions of the model.
- 8. Time of units going to defensive posture (number in the initial, early, middle and late portions of the battle).
- 9. Average length of battle.
- 10. Minimum range of blue forces

11. Rate of battle losses = number of casualties/minute
 of battle.

#### III. MODEL DEVELOPMENT

The model developed for this thesis is a time sequenced, stochastic, battalion level, force-on-force simulation. The model conducts the battle in uniform time steps of 30 seconds each. Figure 2 provides the general scheme for the sequence and flow of events in the model. The pertinent elements for the landmine simulation and analysis problem are the mine countermeasures equipment and the maneuver units. Other necessary values are the mine countermeasures equipment at the assault site and the characteristics of the equipment.

The simulation has been written to allow for maximum user flexibility while maintaining a simple and transparent structure. Unit formations can be easily changed, numbers and types of equipment are easily modified, and even the maneuver network can be easily changed. The full flexibility of the model is discussed in detail as each module is explored. Although the program code is listed in its entirety in Appendix B, the critical portions are discussed in the following sections.

The sequence of events for each time interval (30 seconds) contains six main phases: unit status, unit location, movement, Red detect/fire, Blue detect/fire and battle termination/results. The movement phase applies to the blue forces only. Generally, every blue unit is advanced the total distance it is able to travel based on



Figure 2. Model Flowchart

unit formation, types of equipment, terrain and location. The detection for both the red and blue forces is similar in that the time to detect is fixed at a given interval of thirty seconds. If it takes longer than 30 seconds to detect an opposing element, then that element is not detected. This concept is explored in more detail later in The detection modules also serve to allocate the chapter. the unit's fire, assigning targets to those elements who The fire module is stochastically have detected them. based, using probabilities of hit and kill given hit in a Monte Carlo model to determine the outcome of an engagement. If a hit on a target does occur, the model determines either a kill or no/unimportant damage to the vehicle. Once a vehicle has been killed it is removed from the simulation, no longer able to either provide additional maneuver or fire, nor can it be detected by the opposing forces.

Within the movement phase is the minefield logic. The module deals with a minefield in two phases, that of actions taken upon entry into a minefield and casualties due to entry, and actions taken during the breaching or bypassing of the minefield. The determination of whether a mine detonation occurs, the exact location of the detonation and the damage incurred is a function of the density of mines in the field, the effective vehicle width and the actual distance traveled in the minefield. Knowledge about the specific location of a minefield is

gained in one of two ways, either by visual detection of the minefield prior to entry or by detonation of a mine after entry. Options based on minefield knowledge are discussed in a subsequent section. The mines are considered to be either surface laid or buried. Two minefields are modelled in the simulation, one emplaced far (approximately 3000 meters) from the objective and one emplaced near (approximately 1500 meters) the objective. The probability of detection for the far minefield is low due to the assumption of no reinforcing obstacles or readily identifiable boundaries. The near minefield's detection probability is set higher due to the likelihood of reinforcing the field with wire obstacles. detection probabilities are, however, input data and may be changed to conduct additional analysis. Battle termination stops the simulation when either of the following criteria is met:

- 1. Red force strength falls below 25 percent
- 2. The minimum range between forces is less than 250 meters.

There are no battle termination criteria used for the blue force other than if a company's strength falls below 50 percent, it assumes a defensive posture.

In addition to the main simulation discussed above, an enhanced simulation was developed based on the concept of limited command, control, and communications  $(C^3)$  versus total  $C^3$ . The only control in the initial model is to

insure an alignment of forces with respect to the range to the enemy.

In the enhanced model, in addition to the alignment of forces, the presence of minefields in the area of operations is communicated to the rest of the battalion after initial detonation or detection of the first minefield by the lead unit. This concept is discussed in detail in the minefield logic section of this chapter and is the only modification to the initial model. All other subroutines function the same in both models.

#### A. TACTICAL SCENARIO

The scenario used in the model is based in West Germany on terrain similar to that found near the Fulda Gap. NATO forces have assumed an offensive posture and the 3rd Battalion, 35th Armor is to conduct a deliberate attack to secure near side crossing sites on the Ulster River on the East-West German border. Although enemy forces in the area have been weakened by the past days of fighting, front line troops are in prepared defensive positions protecting the crossing sites. The enemy is believed to be in an economy of force posture and has used reinforcing obstacles to strengthen its position. Reconnaissance by the Scout Platoon has been unable to provide enough information about possible minefields or gaps in the defending system, therefore the decision has been made to breach into and through the defending system in all cases except when

breaching assets are not available. The enemy force is believed to consist of a tank company of T-72s reinforced by a platoon of BMPs occupying prepared defensive positions (Figure 3).

## OPERATION OVERLAY



Figure 3. Operation Overlay

A quick attack is to be made by 3-35 Armor along twin axis of advance with selected limited objectives (Figure 3). The battalion will attack with two companies abreast on each of the two axis to secure the high ground on the objective currently held by the red forces.

#### B. INITIALIZATION AND DATA INPUT

There are fourteen data files which provide support to the simulation. These files support the movement network, the detection/fire modules, and the unit formation and breaching routines and are listed in Appendix C.

Data files 1 through 4 support the movement network by providing arc and node designators, locations of nodes, distances and headings of the arcs, speeds that the unit can maintained based upon terrain, equipment and formation, and the axis of advance for each of the four maneuver units.

Data files 8 through 11 delineate the four possible formations the blue forces are able to use in the conduct of the attack. Figure 4 shows the four formations. Formation configuration and vehicle placement are changed simply by changing the x and y offset positions from the control or ghost vehicle. The purpose of the control vehicle is described in the movement module.

In both versions of the model, formation 0 is used when a unit assumes a defensive posture; formation 2 is the

formation used during the breach or bypass of an obstacle. Formation 1 is the movement/assault formation used by the unit at all other times in model 1. In the enhanced model formation 1 is used by all units until the first minefield is detected/detonated. Formation 3 is then assumed as the standard movement/assault formation at all times except when the use of formation 0 or 2 is invoked.

There are five vehicle type codes used in the simulation. Vehtypel is the designator for a basic M1. Vehtype2 is for a mineplow tank with the plow in the raised position. Vehtype4 is the designator for the same type of vehicle, with the plow in the lowered or deployed position. Vehtype3 and Vehtype5 are used in the same fashion for the mineroller tank, 3 being used to designate the roller in the raised position and 5 to designate the roller in the deployed position. Both the mineroller tank and the mineplow tank can become a regular M1 tank if the breaching attachment is destroyed during conduct of the battle. Therefore it is possible to begin the battle with 10 tanks, 2 mineplow tanks and 2 mineroller tanks and end the battle with 14 regular tanks, if all the attachments were destroyed during breaching operations.

Data file 14 places the blue elements in specific positions outlined in the various formations (Figure 4). For example, if a unit consisted of 14 vehicles (10 tanks, 1 mineroller tank and 3 mineplow tanks) the entry order of



Figure 4. Unit Formations

the vehtype code into data file 14 is the position they would occupy in each of the formations. Therefore if the mineroller tank is entered first as vehicle type 3 in the file, it would occupy the number 1 position in each of the various formations, a mineplow tank entered second as vehicle type 2 in the file would occupy the number 2 position in all formations, etc. This obviously allows the configuration, in terms of numbers and types of equipment, of each unit independently as well as allowing each unit to place that equipment wherever it wishes within each of the formations. The only restriction regarding unit size is that they all must have the same number of total vehicles and that number cannot exceed 20 vehicles without changing the dimensions in the program. For example, one unit could have all tanks while another could have 10 tanks, 3 mineroller tanks and 1 mineplow tank.

The only vehicle type codes that are entered by the user are one, two, or three. The program will automatically change vehicle type 2 and 3 to 4 and 5 appropriately during breaching operations, changing them back to vehicle type 2 and 3 once the breaching operation in that particular unit has been completed.

Data files 12, 13, 15 and 16 support the red forces in such areas as position (file 12), the probability of looking in a particular direction (file 13), the vehicle type, height, and maximum engagement ranges (file 15) and

finally the probabilities of hitting a target and killing the target given a hit, which obviously support the detection and fire modules. Data file 17 provides the probabilities of hit and kill for the blue forces in the same manner as file 16 for the red forces.

In addition to the data files, there are several initial data statements in the program which support the minefield setup module with minefield depths, densities, and probabilities of occurrence, all of which may easily be changed by the user.

#### C. MINEFIELD SETUP MODULE

The anti-vehicular minefield is represented in the simulation as a uniform distribution of mines which are randomly dispersed within the minefield. The minefields are modeled as continuous with the depths ranging from 150 to 300 meters for the minefields located at approximately 3000 meters from the enemy position and 200 to 300 meters for the minefields located approximately 1500 meters in front of the red force position. The minefield densities are expressed in terms of mines per square meter rather than the standard mines per meter of frontage.

Because the fields in this simulation have only a depth associated with them, this unit of measure for density is preferred. The density of the far field is .003 mines per square meter and the density of the near field is .02 mines per square meter. The densities and depths of the

minefields can be easily changed by changing the data statements at the beginning of the simulation. By setting the maximum and minimum depths of the minefields equal, all fields will be of the same depth. The depth of each minefield is determined by a uniform (0,1) random draw which then determines the field dimension by

Depth of Minefield

=mindepth + ((maxdepth-mindepth)\*U(0,1)) / 1000 (equation 3.1)

The basic concept of the minefield effects calculation is that of the expected distance to a mine encounter. Since the mines are randomly placed, the expected distance to the initial encounter and then each succeeding encounter is exponentially distributed. Therefore the expected distance to a mine encounter given by equation 3.2.

where the width is the effective width of the vehicle encountering the mine and the density is the density of the minefield in which the encounter is taking place. Successive distances to each encounter are thus calculated prior to the commencement of the simulation and are stored for future use.

One other feature which is included in the Minefield Setup module is the probability that a particular minefield

is actually emplaced. In the simulation, runs were evaluated under a worse case scenario and a most likely or The most likely or average case average case scenario. scenario used a 70 percent chance of each of the far minefields being in place and a 90 percent chance of each of the near minefields being in place. Therefore the possibly exists on any single run for anywhere from zero to eight minefields to be in place facing the blue force, and on any single avenue from zero to two minefields to be in place, based on the random number draws. By emplacing the minefields in this fashion and then running multiple repetitions of the simulation, a long run average minefield emplacement will be achieved providing a greater degree of variability in the evaluation of the likelihood of success of a particular unit configuration.

#### D. UNIT STATUS MODULE

The unit status module serves to keep a running total on the losses of equipment by unit and type. It is in this routine that the determination of whether a unit goes to a defensive posture is made. If the unit is less than 50 percent effective (i.e., it has lost over half of its equipment), then it assumes a defensive posture, thereby decreasing the likelihood of acquisition by moving to a hull down position. This aspect will be discussed in more detail in the Red Detect module. When a unit goes to a

stationary defensive posture, there is no impact on the speeds of the remaining units.

#### E. UNIT LOCATION MODULE

The unit location module exerts command and control over the battalion by delaying units which are moving too fast. The ranges to the enemy force of all four blue units will be in the interval [rngmin,rngmax] where the two limits are determined by the unit closest to the enemy force (rngmin) and the unit farthest from the enemy force (rngmax).

The module computes the range to the objective of each unit. If the range difference between all the units is less than 500 meters, then all units proceed at the maximum speed possible as determined by terrain and equipment in each unit. However, if the range difference between the closest and farthest units is greater than 500 meters, then the speed of the closest unit is adjusted downward by a lag factor, AAA. The factor AAA is computed by equation 3.3:

AAA=(rngmax-rngmin)/lag

(equation 3.3)

where lag is the maximum distance allowed between the closest and farthest units: in this case, 500 meters. This value is then passed to the movement module where it is used to decrease the speed of the leading unit. As an example, if the range of the closest unit is 2.4 kilometers

and that of the farthest unit is 3.2 kilometers, then the value of AAA would be:

$$AAA = (3.2-2.4)/.5 = 1.6$$

This value is then used to decrease the speed of the leading unit by a factor of 1.6. Thus for a speed of 25 kilometers per hour decreased by an AAA of 1.6, the new speed of the unit would be 15.625 kilometers per hour.

#### F. MOVEMENT MODULE

The movement logic is first discussed in detail without the minefield modules included. Minefield tactics and how they impact on the movement routine are discussed in the following section. The Movement module is made up of three distinct routines; a determination of unit speed, location and distance traveled along an arc, and the location of each of the elements in the unit in x and y coordinates (Figure 5).

Unit movement consists of moving each unit along a network of arcs, each of which has a distance, heading and speed associated with it. The network used to support this simulation is shown in Figure 6. A unit starts at the tail node of the arc, moving as far as possible in the 30 second time interval, based on the allowable speed associated with that particular arc and the type of equipment in the unit. For each 30 second time step the following process is followed for each unit in the Movement module. On entry into the subroutine the first decision is whether or not



Figure 5. Movement Flowchart

the unit is in a defensive posture. If it is, then the unit speed is set to zero and the logic loops to the offset routine where the x,y position of each element is determined.



Figure 6. Network Supporting Movement Routine

If the unit is still combat effective the Speed subroutine is entered to determine the unit's speed and travel. The first step is to determine the maximum speed a unit can maintain on a given arc based on equipment in the unit and terrain characteristics for that arc. The trafficability and slope of the terrain are taken into account by degradation of the unit speed as shown in the Speed file (Appendix C).

If the unit has a mineroller tank, then that vehicle is the limiting speed factor unless the unit also has mineplow tank which is currently being employed, in which case that vehicle is the limiting speed factor. The speed of a unit may vary on a single arc as the unit's equipment changes configuration or is attritted. Once the speed of the unit is determined, if it is the unit closest to the enemy and the lag factor, AAA, is greater than 1, then the speed is decreased accordingly. Once the final speed for the time step is determined, the travel for the thirty second interval is determined and control returns to the Movement module.

The ghost vehicle is the only vehicle that is actually moved and controlled by the model. Once the speed and travel of the unit is determined, the ghost vehicle is moved to a new set of x,y coordinates along the arc. Then, depending on the current formation of the unit, the elements are positioned by the Offset subroutine. The new positions are determined by the x and y offset distances obtained from the appropriate formation data file and are adjusted depending on the current heading of the ghost vehicle along the arc (Figure 7).

As an example, an element that is offset (-1.0,1.0) is 100 meters up and 100 meters behind the ghost vehicle. If the current position of the ghost vehicle is (483,621) and it's heading is due east then the element is located at (482,622). If, however, the ghost vehicle was at the same

location but heading northeast (45 degrees from the x axis), then the location of the element is (483.0,619.6).

# DETERMINATION OF ELEMENT X,Y COORDINATES



Figure 7. Determination of Element X,Y Coordinates

When the unit reaches the end of an arc, the unit assumes the new heading and speed associated with the next arc in the network. In this fashion, all units are able to move independently over any network which may be developed to support the scheme of maneuver.

#### G. MINEFIELD LOGIC

Once the Movement routine was developed, it was a simple matter to construct and insert the minefield logic which is the heart of the simulation. The minefield logic, like the rest of the simulation, is flexible in nature, allowing for an unlimited number of configurations. Minefields may be placed on any arc in the network, the only restrictions being that the arc must be longer than the depth of the minefield and only two minefields per avenue of approach may be input. The probability of a minefield being in place, the density of the minefield and the maximum and minimum depths are all input by the user.

The minefield logic is discussed in two phases: first the actions taken on entry into the minefield, and second, the actions occurring during the breach of the minefield.

#### H. INITIAL ENTRY INTO A MINEFIELD

A decision model has been developed which represents the process by which a unit commander selects one of the three possible options available to him when a vehicle in his unit detonates a mine or the location of the minefield is detected visually. Figure 8 shows the general sequence of events involved in the minefield detection logic. As discussed earlier, he may choose to:

 conduct a hasty breach if the unit possesses any breaching equipment;



Figure 8. Minefield Logic Flowchart

- 2. bypass the minefield if the tactical situation permits or he does not possess any breaching equipment; or
- 3. order a "bull through", hoping to clear a lane without sustaining overwhelming casualties.

The choice the commander makes in the simulation is based on the knowledge he currently possesses about the minefield. Once that knowledge about a particular minefield is gained, it is assumed to be perfect knowledge in regards to the boundaries of the minefield and the unit's location within that minefield. If the knowledge about the minefield is gained prior to entering the minefield, then the model will elect one of two options; either a breaching operation if the unit currently possesses breaching equipment, or a bypass if it does not. The breaching operation begins at the edge of the field and distances to mine encounters are retrieved from the array previously calculated in the minefield setup module.

If the knowledge about a minefield is gained after entry, it is gained the hard way by detonation of a mine. The simulation is able to react in one of three ways. If the unit possesses any breaching equipment, it begins a breaching operation from the point where the mine detonation took place, since it is assumed that up to that point the minefield has been successfully breached. If the unit does not possess any breaching equipment, the decision to "bull through" or bypass is based on the distance into the minefield that the detonation took place, thereby

assuming perfect knowledge for the commander on the specific boundaries of the minefield once it is identified. If the detonation occurred less than half way through the minefield, the unit commander elects to conduct a bypass operation. If the unit has penetrated more than half way through the minefield prior to the first detonation, then the unit will "bull through" the minefield, hoping to minimize losses as compared with attempting to back out and bypass the obstacle.

In all cases, regardless of the option chosen by the unit, the following two actions occur. The unit is assessed a thirty second delay in movement while changing formations and any enemy elements which have been detected by the unit entering the minefield are lost. Therefore, if in the period (t,t+30) the unit had detected an enemy element, during the normal sequence of events that element would have been engaged during the period (t+30,t+60). However, due to the minefield encounter occurring during the period (t+30,t+60), all detections are lost and all elements in the unit entering the minefield must reenter the detection module during the period (t+30,t+60). Additionally, at any time the unit is in a breaching operation all vehicle types 2 and 3, which are now coded as 4 and 5, respectively, cannot conduct direct fire engagements. This restriction occurs because the crew is

occupied with the conduct of the breach as opposed to trying to detect the enemy.

## I. BREACHING OPERATIONS

If a minefield has been entered, the breaching operation commences. Although the bypass is not really a breach of the obstacle, it does allow the unit to circumvent the minefield and continue its mission.

In the simulation the bypass option is dealt with rather simply. Rather than building additional arcs and nodes as a bypass route, which would invariably restrict the placement of minefields, the unit's speed is simply degraded and the mine detonation routine is suppressed. In this manner the unit is subjected to enemy fires for a longer period of time and the delay in forward progress accurately simulates the requirement to move parallel to the minefield in hopes of discovering a route around the obstacle.

A similar methodology is used for the "bulling thru" technique. The unit, in it's attempt to "bull thru", maintains a single column formation, thereby reducing the exposure of trailing elements to mine detonations.

The formation the unit uses while breaching the minefield is specified as input to the model. In this simulation, the formation used in all breaching operations is a single column of vehicles with all the breaching assets at the head of the column.

The unit will conduct the breach if it possesses the requisite assets. The simulation places all the breaching equipment at the front of the formation, with all the mineplows leading, followed by the minerollers, then followed by the remaining vehicles in the unit. The order that the vehicles enter and breach the obstacle is user input through the use of formation 2. The simulation does allow for a breaching device to be destroyed without destroying the carrier on which it is mounted. If a breaching device does become inoperable, then that vehicle's type code is changed to a 1 (M1 tank) and it is cycled to the rear of the formation. In this fashion, a vehicle with no breaching device does not lead the breach (unless there are no more breaching assets in the unit).

The simulation will allow any of the following cases to occur depending on the random draw.

- 1. A clearing device may be destroyed.
- 2. The carrier of a breaching device may be destroyed.
- 3. A mine may be left uncleared.

In case 3 a following vehicle may clear the mine if it has a breaching device, or it may detonate the mine and be killed.

In the breaching logic, mine encounters by each type of vehicle are dealt with in the following manner. If a vehicle type 1 encounters a mine, a random draw is conducted to determine a kill or no/unimportant damage.

For the M1, all mines are detonated when encountered and none are left uncleared under the tracks.

If the lead vehicle is a mineroller, there is a two step process in the determination of the probability of clearing and surviving the mine encounter. Figure 9 shows the process for the clearing of mines by the mineroller tank. When a mine is encountered there exists a probability associated with the clearing of the mine and, then given the clearing (by detonation with the rollers), a probability associated with surviving the blast.

Although the operation is similar for the mineplow, a mine encounter involves a three step process to determine the outcome of an encounter. Figure 10 shows the methodology used for an encounter by a mineplow tank. There is

- 1. a probability associated with clearing the mine,
- 2. a probability of detonation given the plow cleared the mine and finally
- 3. a probability of surviving, given the detonation by a cleared mine.

If a unit has breaching assets, then it conducts a breach. However, after losing its last piece of breaching equipment the decision to "bull thru" or bypass is the same as when the field is first encountered. If the unit has not penetrated at least halfway through the minefield, then it conducts a bypass. If it has reached the halfway mark,



Figure 9. Mineroller Breaching Flowchart



Figure 10. Mineplow Breaching Flowchart

then the unit will "bull" the rest of the way through the minefield.

In Model 1, units encounter and deal with each minefield entirely on their own. There is no communication between units regarding the encounter of a minefield. Each unit stays in formation 1 until they either detect or detonate a minefield, suffering the losses associated with each encounter. Once the field is cleared the unit returns to formation 1, and the process is repeated for the second minefield.

With Model 2, communication regarding minefield locations is simulated. When the lead unit encounters the first minefield, all the other units in the battalion assume a detection formation. Formation 3 in Figure 4 is used for this purpose. The mineroller tank is placed in the lead in hopes of detecting the location of the minefield on the axis of advance by the rollers and avoiding vehicle losses due to detonations. Additionally, when the unit exits the minefield, it resumes formation 3, as opposed to Model 1 where the unit assumes formation 1.

Once a unit has successfully breached a minefield, vehicles in that unit are not subject to mine detonation since the clearing operation is assume to be completely effective. Prior to that point, mines that were not cleared by a breaching vehicle may detonate and cause casualties to following elements.

## J. FIRE AND DETECTION MODULES

The Fire and Detection modules operate simultaneously in the model. It is possible for different elements of the same unit to be detecting or firing during the same 30 The model does not restrict the unit second time period. to either the detection or firing phase during each time step. All elements initially start out in the detection When element i detects an opposing element j during the period (t,t+30) then during the following period (t+30,t+60) element i enters the firing module and conducts the engagement. If the detection of element j occurred during the period (t,t+30) then during the following 30 second time period line of sight is assumed to continue to exist for the firing phase. It is also assumed that if element i is busy firing during the period (t,t+30) then no target search is conducted by element i during this time interval.

The red forces may detect or engage, depending on the type of vehicle, up to two enemy elements in the thirty second time period due to their stationary defensive posture. Tanks can detect or engage two elements in the thirty second period while a BMP is able to either detect or engage only one target during the time interval due to the characteristics of the weapon system.

The blue forces, due to their offensive posture, are able to detect or engage only one enemy element in a time

period. As a control for fire distribution only 2 red elements may detect or engage any single blue element at a time while 4 blue elements may detect/engage any single red element at a time.

Once a firer has completed his direct fire engagement(s), he returns to the Detect module during the next time period regardless of the outcome of the direct fire engagement. Even if during the period (t,t+30) element j engaged but did not kill element i, he must still go back to the Detection module during the next time step and attempt to redetect element i.

#### K. DETECTION MODULE

The Detection modules for the red and blue forces are exactly the same except for minor differences which will be pointed out in the discussion as they occur. Figure 11 shows the flow through the red Detection module. The only difference in the flow through the blue Detection module is that the red forces are always in a defensive posture, therefore there is no need for crossing velocity calculations.

The detection computations used in the simulation were adapted from the DYNTACS model with some minor changes.

[Ref. 12] For each element i the computations look at every enemy entity in the thirty second period to determine if they can be detected. A detection rate, DETRATE, for



Figure 11. Red Detection Flowchart

every enemy element is computed is assumed to be constant for at least 30 seconds. Then the continuous looking model is used to compute the probability of detection in equation 3.4.

where T equals 30 seconds. Finally a Bernoulli trial is performed to determine whether or not the target is detected.

The detection rate equation 3.5 DETRATE is:

where:

and where the observation conditions are described by:
TAU = terrain complexity code; it can take on values from 1
to 7

RNGAPP = apparent range in kilometers. The apparent range is the range at which a fully exposed M60 tank would present an image which is the same height as the image that is observed for the current target. RNGAPP is computed as:

where the denominator in the simulation is a random variable. For the attacking blue force, the percent

visible ranges from 50 to 100 percent for an offensive posture and from 50 to 75 percent for those unit which have assumed a defensive posture. For the red force the percent visible ranges from 25 to 50 percent due to the availability of prepared defensive positions.

The crossing velocity (CV) is measured in meters per second and is the target velocity component which is perpendicular to the target-observer line. It is the component of target movement which is most noticeable to an observer. The crossing velocity for the red force is zero, since they are in stationary defensive positions. When a blue force goes to a defensive posture, the model also sets their crossing velocity component to zero.

RPLOOK is the probability that the observer is looking in the direction of the target and is a user input in the model. For the blue force it is a constant 75 percent chance of looking in the direction of the target and for the red force it is dependent on the avenue of approach.

## L. DIRECT FIRE MODULE

The Direct Fire module is stochastically based using probabilities in a Monte Carlo model to determine the outcome of an engagement. The range from the firer to the target is calculated and then used in a table look-up to determine the probability of a hit and of a kill given a hit. The values are then compared to a random draw to determine the outcome of the engagement. The only outcomes

are either a kill or no/unimportant damage. If a target is killed it is assigned a "dead" code and is removed from the simulation.

This completes all the necessary modules required to conduct the battle simulation to generate the data necessary to analyze the measures of effectiveness developed in Chapter 2. The output is analyzed and the MOEs are evaluated in Chapter 4.

# IV. OUTPUT ANALYSIS

## A. BASIC RESULTS

The purpose of the simulation is to generate output to be used in the analysis of measures of effectiveness (MOEs). In this section numerical results are presented for each configuration and scenario. Fifty repetitions of each configuration were conducted and there were 5 different configurations evaluated against four different scenarios. The output provides a performance evaluation prediction of the mine countermeasures equipment. The four scenarios allow for the MOEs to be evaluated under varying conditions.

Scenario 1 evaluates the unit's performance when facing only direct fire weapons. The purpose of this scenario is to determine the impact of the countermine equipment on the unit's ability to fight when no obstacles are present. Scenarios 2 and 3 evaluate the unit's performance when faced by a combination of direct fire weapons and minefields. Scenario 2 examines the situation where there is a probability that the minefields are emplaced; Scenario 3 looks at the worse case situation: the probability of the minefields being in place is equal to 1. Scenario 4 is used to determine the effectiveness of the countermine equipment when faced only with minefields.

Sample data files used to support the evaluation of the MOEs are shown in Tables 1 and 2 ( all tables and figures follow this chapter). In the heading of Table 1, the starting force configuration is shown. Columns 1 through 4 tabulate the direct fire losses by repetition. Column 1 is the total number of losses, column 2 is the direct fire losses of the M1, column 3 is the direct fire losses to the mineplow tanks and column 4 is the direct fire losses to the mineroller tanks.

Columns 5 and 6 of Table 1 give the losses of the breaching device due to mine detonations. Columns 7 through 10 represent the losses to the force due to mine detonations, each column representing the equipment in the same order as for the direct fire losses. Columns 9 and 10 represent the losses of the mineplow and mineroller tanks when they are not in a breach mode, i.e., the breaching device was not employed at the time of detonation.

Columns 11 and 12 represent the losses of the mineplow tank and mineroller tank due to mine detonations while attempting to breach the minefield. Column 13 is the total number of kills due to both direct fire and mine detonations and is the summation of columns 1,7,11 and 12. Column 14 is the length of the battle while column 15 is the minimum range attained by any unit during the battle.

Table 2 gives the status of the minefields on each axis and the time a unit went to a defensive posture. Columns

M1 (far minefield) and M2 (near minefield) give the status of the minefield, a 1 representing an active field while a 0 represents an inactive field. The time to defensive posture is given for each unit, a time of 0.0 meaning the unit did not assume the defense. The last column is the time to battle termination and is the same as column 14 in Table 1.

Tables 3,4,5 and 6 show the results of the evaluation of the output as derived from the MOEs. The sample mean is given, followed by the sample standard deviation in parentheses. Each column is the evaluation of a particular configuration against all applicable MOEs. Obviously in some cases an MOE does not apply due to a quantity required not being available, such as the number of pieces of breaching equipment in the unit configuration 14/0/0.

## B. EVALUATION OF MOES

MOES 1 (Figure 12), 2 (Figure 13) and 3 (Figure 14) all deal with losses to the blue force versus their starting strength. The value for MOE 1 was found by using column 1, Table 1 divided by 56 to give a percentage of losses due to direct fire. Figure 12 shows the comparison of each configuration under each scenario. Direct fire losses for configuration 14/0/0 are low when no mines are present, but are the highest of any configuration as soon as minefields are introduced into the area of operations. Of interest is the fact that even though the configurations with

breaching equipment have higher direct fire losses than the configuration without breaching equipment, the difference is 3 or 4 percentage points at most.

MOE 2 examines the losses due to mine detonations in Figure 13. Values are found by summing the losses in columns 7,11 and 12 from Table 1, and dividing by the starting strength of the battalion. Intuition would dictate that the losses to the force with no breaching equipment would be higher than those configurations with breaching equipment. This is not the case. Since each unit acts independently to detect minefields and the formation used does not place the breaching equipment in the lead, losses due to initial entry into a minefield should be the same for all force structures. It is at this point that the casualties due to mines increase for the forces with breaching equipment. The unit with no breaching equipment will usually bypass the minefields and therefore sustain no further mine casualties, while the units with breaching equipment conducts a breach, losing more equipment to mines in the process.

MOE 3 compares the losses to each unit due to both mines and direct fire in Figure 14. The values are found by using column 13 from Table 1 divided by 56. It is interesting to note that in the cases of the probability of minefields with direct fire and 100 percent probability of minefields with direct fire, the 12/1/1 configuration

performed better than the 10/2/2 combination. This is due to the fact that most of the breaching assets in the 12/1/1 configuration are lost during the breach of the far minefield and the unit is able to travel faster in the 2600 to 1500 meter range band, thereby being subjected to the enemy's direct fire weapons for a shorter period. Of the configurations with breaching equipment, the 8/3/3 unit does the best when there is no direct fire.

MOES 4,5 and 6 compare the losses of equipment versus the number of pieces of breaching equipment available in the unit. Their values are computed in the same manner as MOES 1,2 and 3 except the denominator is the number of pieces of breaching equipment. Due to a changing denominator, the comparison of the of the various configurations is difficult. However the MOES show the increasing number of casualties as the probability of the minefields increase (Figure 15). The synergistic effect of the combination of direct fire and minefields is clearly evident (Figure 16). The losses to any of the forces is the lowest when faced by direct fire only, increasing slightly when faced by minefields only, and increasing drastically when the combination of the two systems interact to defeat the enemy (Figure 17).

Since the number of pieces of breaching equipment are the same in the 10/2/2 and the 10/3/1 configurations they may be examined in more detail for these MOEs. The 10/2/2

configuration performed better when the unit was faced by direct fire only or minefields only, however the difference is minimal. When faced with a combination of mines and direct fire, the 10/3/1 configuration fared slightly better in both the number of direct fire casualties per piece of breaching equipment (Figure 16) and the total number of casualties due to mines and direct fire combined (Figure 17).

The number of units going to a defensive posture is shown by MOE 7 (Figure 18). The number is obtained from columns 3,6,9 and 12 from Table 2. In the scenario with direct fire only, the number of units going to defensive posture is relatively the same for all configurations, thereby again substantiating the point that the countermine equipment does not impact a great deal on the unit when it is faced only by direct fire. Even when the units are faced by scenario 2 (probability of minefields and direct fire) the number of units going to defensive posture does not differ a great deal. It is only when there exists a 100 percent chance of minefields that differences becomes The best performer for the configurations with large. breaching equipment when faced only by minefields is the 8/3/3 combination while the 12/1/1 combination was the worst. However when faced by the probability of minefields and direct fire the number of units going to a defensive posture was significantly lower for the 12/1/1 combination and even the 10/2/2 combination did better. This can be attributed in part to the fact that the breaching equipment is prevented, by the simulation, from engaging while breaching operations are taking place.

MOE 8 examines the period in the battle when the units went to a defensive posture (Figure 19). The battle was divided into four time periods - beginning, early, middle and late - each period representing one fourth of the duration of the battle. The determination of which period a unit went to a defensive posture was calculated by taking the battle time of each repetition and determining in which quarter the defensive times fell.

Once again all configurations performed equally well when there were no minefields and the units were faced only by direct fire. In this MOE all the configurations with breaching equipment performed better then the 14/0/0 configuration. The 14/0/0 configuration tended to go to a defensive posture much earlier in the battle due to the reduced speed imposed by the bypass routine. The 14/0/0 configuration is able to reach the far set of minefields quicker then the other configurations where it is then stopped and is attritted by the enemy. The configurations with breaching equipment were able to keep moving much longer in the battle, with the 10/2/2 combination performing the best.

The length of the battle is described by MOE 9 (Figure 20). Once again the numbers are misleading unless they are examined closely. In scenario 1, the 14/0/0 unit is able to close with the enemy much sooner (due to no speed degradation caused by the breaching equipment) than the units with breaching equipment. The length of the attack is approximately six kilometers and the higher speeds of the M1 unit allows it to travel faster. Similarly, the probability of minefields combined with direct fire still produced quicker battle times for the 14/0/0 combination, since if at least two units did not encounter the far minefield, they could close rapidly with the enemy and The time of battle for 100% minefields and direct fire is essentially equal for all configurations, with the 14/0/0 configuration able to move rapidly between minefields and then losing time while bypassing. average length of battle when there are only minefields present was approximately the same for all configurations with breaching equipment. It was also approximately the same when each configuration is compared between the two scenarios of 100% minefields/direct fire and when there are only minefields present. The big increase in time occurs in the 14/0/0 configuration, starting from a low in the O%/direct fire scenario to a maximum in the 100%/no direct fire case. It should be noted that the only battle termination criteria that applies in the 100%/no direct

fire is the minimum range requirement of 250 meters and this requirement causes the 14/0/0 configuration to bypass both the far and near minefields.

The average range at battle termination is MOE 10 (Figure 21). All values are approximately the same with one notable exception, that of the 14/0/0 configuration in the scenario of probability of minefields/ direct fire. This dramatic increase, in relation not only with itself but also with the other configurations, is attributed to the fact that the units on the avenues that are not faced by a minefield move rapidly through the area and suddenly find themselves in a direct fire battle with the enemy where they are attritted to a defensive posture early in the battle. This fact is substantiated by consideration of MOE 8, Figure 19, where the number of units going to a defensive posture in the middle of the battle is substantially higher for the 14/0/0 configuration.

The rate of battle losses is the last MOE. Figure 22 shows the rates which were determined by taking the total number of casualties per repetition (column 13, Table 1) and dividing by the length of battle for the repetition (column 14, Table 1). The figures, when comparing the 14/0/0 configuration with the rest of the configurations, are somewhat misleading. The 14/0/0 had the least number of losses in all cases, but since they are able to travel faster, battle time was shorter, causing the rate to appear

artificially high. Among the configurations with breaching equipment, there is no single best performer, although the 12/1/1 and the 8/3/3 configurations were better than the others.

# C. SUMMARY OF RESULTS - MODEL ONE

Upon examination of all the configurations with breaching equipment under the four different scenarios, the best performer was the 12/1/1 combination. The reason is that the breaching assets of the 12/1/1 configuration are, in most cases, just enough to allow the unit to breach through the low density far minefield and then continue the attack without being encumbered by the slow moving breaching equipment. The low amount of breaching equipment also means that the majority of the force is able to engage the enemy while breaching operations are taking place.

The only configuration that clearly performs better than the 12/1/1 configuration is the 8/3/3. This configuration is of greater benefit when there is no direct fire and it is in these situations that the 8/3/3 configuration does perform better.

## D. SENSITIVITY ANALYSIS USING THE ENHANCED MODEL

Sensitivity analysis was conducted through the use of the second model. As discussed in Chapter 3, the second model was developed using the concept of perfect communications. When one unit encounters a minefield, the rest of the units redeploy in formation 3, placing the roller assets in the lead to detect the minefields on their avenue. Two configurations, the 12/1/1 and the 10/2/2, were evaluated under two scenarios, the probability of minefields/direct fire and the 100% minefields/no direct fire, and the output was analyzed under the same MOEs and compared to the values found using Model 1. Table 7 shows the mean and standard deviation of the 50 repetitions conducted under each configuration and scenario.

The two configurations are compared against the base case configuration of 14/0/0. Figure 23 shows the comparison using MOE 1. In both configurations the performance using Model 1 was slightly better. However, using MOE 2, the losses due to mines was greatly reduced using Model 2, even to the point that the 12/1/1 configuration performed better than the 14/0/0 configuration (Figure 24). Figure 25 shows the total percent of losses due to both mines and direct fire. The configurations once again performed better under Model 2, even to the point that the 12/1/1 configuration suffered fewer losses than the 14/0/0 configuration in the probability of minefields/ direct fire scenario.

MOEs 4 (Figure 26), 5 (Figure 27), and 6 (Figure 28) compare the configurations when the amount of breaching equipment is constant. In all four cases the losses per piece of breaching equipment dropped under Model 2, however

there was a slight increase in the direct fire losses. This can be attributed to the fact that once the first minefield is detected, the units move only as fast as the mineroller tank. Overall, the two configurations performed better under Model 2.

The percent of units assuming a defensive posture decreased under both scenarios of the 12/1/1 configuration, but the results were mixed for the 10/2/2 configuration (Figure 29). The period in the battle also showed an improvement for the 12/1/1 configuration under Model 2. In the probability of minefields/direct fire scenario, the number going to a defensive posture in the middle phase of the battle dropped dramatically, with a slight decrease occurring in the late battle also.

Once again the average length of battle figures are deceiving unless examined closely. Figure 31 show an increase in all the battle times. This is entirely due to the fact that once the first minefield is detected/detonated, the fastest speed a unit can move is that of the mineroller tank, at least until it is attricted.

Figure 32 shows the average ending range of the battle with the results indicating little or no difference between the two models. Finally, Figure 33 shows the rate of battle losses, again with a dramatic improvement for Model

2. Obviously the contributing factor is the decrease in losses to the force due to mine encounters.

The tactics used by the attacking force, in particular the method of detecting the obstacles, impacts heavily on the performance of the unit. Under Model 2 the 12/1/1 configuration once again performed better than the 10/2/2 configuration when evaluated under the two scenarios, because the majority of the breaching equipment is lost during the conduct of the first breach and the unit is able to travel faster. Also, under the probability of minefields/direct fire scenario, if one unit detects a minefield and is slowed in its progress, it will be able to easily catch up to the unit that did not encounter a minefield, since that unit is moving only as fast as the employed mineroller tank. This allows the units to align themselves to concentrate their fires on the target.

#### E. FINAL CONCLUSIONS

Based on the evaluation of the MOEs using the output from both Models 1 and 2 the following observations and conclusions can be made. The amount of breaching equipment required to support an armor battalion is situationally dependent.

The various factors weighing heavily on the required number of breaching assets are the enemy, terrain, mission and tactics. If a battalion is assigned a clearing mission in a lightly defended area, a force configured with a larger number of breaching assets would perform better, although if time was not crucial and the threat involved was low, a smaller number of breaching assets would prove to be just as effective.

If the area of operations is heavily defended, a force configuration that would allow the unit to breach the outer obstacles and then rapidly close with and defeat the enemy force would call for a smaller number of breaching assets. If the terrain restricts maneuver space to such a degree that the bypass option is no longer viable, the number of assets would have to be increased to insure a greater degree of success.

Based on the configurations and scenarios examined in this thesis, a force structure of 12 tanks, 1 mineplow and 1 mineroller tank is recommended, however further analysis in this area should be conducted to confirm the results.

| UNIT 1 UNITO<br>UNIT 2 UNITO<br>UNIT 3 UNITO<br>UNIT 4 UNITO<br>NUMBER OF KI | ODE 1 EQUI<br>ODE 1 EQUI<br>ODE 1 EQUI<br>LLS BY CAT | P TANK 10 MI<br>P TANK 10 MI<br>P TANK 10 MI<br>EGORY PER RE | NEPLOW<br>NEPLOW<br>NEPLOW<br>NEPLOW<br>PITITION         | 2 0 MIN<br>2 0 MIN<br>2 0 MIN                        | EROLLER<br>EROLLER<br>EROLLER<br>EROLLER           | 2                                                             | 0<br>0<br>0<br>0                                                                             |
|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                              | ROLL PLOOP 100000000000000000000000000000000000      | MINEFIELD 0 0 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0              | PLOWC452216213441414304251203333453317330017412121323204 | ROLLCARR 0200000000000001100030101001002000110000001 | 19<br>21<br>19<br>25<br>23<br>17<br>15<br>28<br>28 | C544444444444444445445550005005500550005500055050505050505050 | MI1.0823318137413136595047765490642619999756484387711220011011010001111111111111001111110110 |

TABLE 1. VEHICLE LOSSES, TIME AND RANGE OUTPUT FILE

| AV                                       | ACTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MINEFIELD                                            | S AND                            | TIMES                           | TO DE                                                               | FENSI                      | /E PO                     | STURE<br>NUE 4                                                                 | RUN TIME                             |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------------------------------------------|--------------------------------------|
| M1                                       | ENUE 1<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVENUE<br>M1 M2<br>1 1                               | 34.5                             | Mi<br>1                         | M2                                                                  | .5                         | M1                        | NUE 4<br>M2<br>1 41.0                                                          | 60.5                                 |
| į                                        | 1 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 8                                                  | 0.0<br>36.5                      | 0<br>1<br>0                     | 1 41                                                                | 0                          | 1                         | 0 0.0                                                                          | 42.5                                 |
| · i                                      | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ō Î                                                  | 0.0                              | Ô                               | 1 37                                                                | '.0                        | 0<br>1<br>1<br>0          | 0 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0                                      | 42.5<br>43.5<br>42.5                 |
| 1                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ī 1                                                  | 40.5<br>40.0                     | Ö                               | 1 0                                                                 | . 0                        | Š                         | 1 0.0                                                                          | 42.5<br>42.0<br>40.5                 |
| 1                                        | 1 0.0<br>1 40.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1                                                  | 40.0                             | į                               | 1 43                                                                |                            | 0                         | 0 0.0                                                                          | 45.5<br>43.0                         |
| 1                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 42.0<br>40.0<br>41.5             | Ó                               | 1 0                                                                 | . 8                        | Ó                         | 0 0.0<br>1 0.0<br>1 0.0<br>1 42.5                                              | 42.5                                 |
| 0                                        | 1 0.0<br>1 43.5<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1                                                  | 0.0                              | 0<br>1<br>1<br>1<br>0<br>1<br>0 | 1 0                                                                 | .0                         | Ö                         | 1 0.0                                                                          | 45.0<br>39.0<br>49.0                 |
| ļ                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1                                                  | 45.0                             | Ó                               | 1 49<br>1 41<br>0 37<br>1 0 37<br>1 1 35<br>1 36<br>1 36<br>1 40    |                            | į                         | 1 47.5                                                                         | 45.5<br>42.5                         |
| Ġ                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 0 1 0 1                                            | 0.0<br>38.0                      | į                               | 1 40                                                                | .0                         | į                         | 1 0.0                                                                          | 44.0<br>39.5                         |
| 0                                        | 0 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 1                                                  | 0.0                              | 0<br>1<br>1<br>1<br>0           | 1 36                                                                | .0                         | Ó                         | 1 0.0                                                                          | 41 N                                 |
| 1                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1                                                  | n n                              | 1                               | 1 0<br>1 37<br>0 0                                                  | .0                         | į                         | 1 0.0                                                                          | 43.0<br>43.0<br>40.5                 |
| į                                        | 1 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>0 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1<br>0 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1 | 0.0<br>0.0<br>0.0<br>33.5        | 0                               | 0 0                                                                 | .0                         | 1010111110111101011111000 | 1 0.0<br>1 0.0<br>1 0.0<br>0 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 46.0 | 44.0                                 |
| į                                        | 0 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1                                                  | 33.5<br>0.0                      | Ĝ                               | 0 38                                                                | .5                         | ì                         | 1 0.0                                                                          | 41.0<br>41.0<br>41.5                 |
| į                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1                                                  | 0.0                              | 0                               | 1 37                                                                | . 0                        | Ĭ                         | 0.0                                                                            | 43.0                                 |
| į                                        | 1 0.0<br>1 0.0<br>1 41.5<br>1 0.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1<br>1 0 3                                         | 37.5                             | 1                               | 0 38<br>1 45                                                        | .0                         | į                         | 1 46.0                                                                         | 49.0<br>46.0                         |
| į                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1                                                  | 37.5<br>0.0<br>0.0<br>0.0<br>0.0 | 1<br>1<br>0<br>1                | 1 0                                                                 | . 0                        | Ŏ                         | 0.0                                                                            | 40.5<br>43.5                         |
| 1                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1                                                  | 0.0                              | ļ                               | 1 0                                                                 | . 0                        | 0                         | 1 0.0                                                                          | 35.5<br>40.5                         |
| 1                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | 0.0                              | i                               | 1 0                                                                 | .0                         | 0<br>1<br>0               | 1 0.0<br>0 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0<br>1 0.0                    | 41.5                                 |
| ļ                                        | 1 0.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1                                                  | 0.0<br>36.5<br>0.0<br>0.0        | 0                               | 0 40                                                                | .0                         | 0                         | 1 0.0                                                                          | 43.5                                 |
| į                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1<br>1 1<br>1 1<br>1 1                             | 0.0                              | 0<br>1<br>0                     | 1 38<br>0 38<br>1 0                                                 |                            | Ŏ                         | 1 0.0                                                                          | 43.5<br>45.5<br>42.0<br>42.5<br>38.0 |
| i                                        | 0 0.0<br>1 0.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                  | 0.0                              | 0                               | 1 0 1 40                                                            | . 0                        | 1                         | 1 0.0                                                                          | 38.0<br>46.0                         |
| 1                                        | 0 39.0<br>1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 0 1 0                                          | 39.0<br>45.5<br>0.0              | į                               | 1 35                                                                | .5<br>.5<br>.0<br>.5<br>.5 | 1                         | 1 0.0<br>1 0.0<br>1 44.5<br>1 0.0<br>0 0.0                                     | 41.5<br>46.0                         |
| į                                        | 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                  | 0.0                              | 1<br>1<br>1<br>1                | 1 35<br>1 33<br>1 36<br>1 35                                        | . 5                        | ì                         | 1 0.0                                                                          | 42.0<br>42.0                         |
| 1111010111110011001001011111111111101111 | ENUTE STATE OF THE | 0 1<br>1 1 6<br>0 1                                  | 43.O                             | 100                             | 1 40<br>1 35<br>1 35<br>1 36<br>1 35<br>1 38<br>1 40<br>1 35<br>1 1 | .0                         | 0 0 1 0 1 0 1 0 1 0       | 1 0.0                                                                          | 44.5<br>42.0                         |
| i                                        | 0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 4                                                | 11.5<br>40.5<br>0.0              | i                               | 1 35                                                                | .5<br>.5<br>.0             | 1                         | i 0.0<br>i 0.0                                                                 | 43.5<br>37.5                         |
| i                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i i                                                  | ā.ā                              | ō                               | ī ō                                                                 | . 0                        | ĭ                         | 1 0.0                                                                          | 43.5                                 |

TABLE 2. MINEFIELD STATUS AND DEFENSIVE POSTURE TIME OUTPUT FILE

# Measure of Effectiveness

# No Minefields/Direct Fire Unit Configuration

|     | 14/0/0  | 12/1/1           | 10/2/2           | 8/3/3            | 10/3/1           |
|-----|---------|------------------|------------------|------------------|------------------|
| 1   | 0.239   | 0.251            | 0.252            | 0.268            | 0.235            |
|     | (0.098) | (0.100)          | (0.099)          | (0.105)          | (0.092)          |
| 2   | N/A     | N/A              | N/A              | N/A              | N/A              |
| 3   | 0.239   | 0.251            | 0.252            | 0.268            | 0.235            |
|     | (0.098) | (0.098)          | (0.099)          | (0.105)          | (0.092)          |
| 4   | N/A     | N/A              | N/A              | N/A              | N/A              |
| 5   | N/A     | 7.020<br>(2.808) | 3.525<br>(1.384) | 2.500<br>(0.983) | 3.295<br>(1.291) |
| 6   | N/A     | 7.020<br>(2.808) | 3.525<br>(1.384) | 2.500<br>(0.983) | 3.295<br>(1.291) |
| 7   | 16/200  | 21/200           | 14/200           | 20/200           | 13/200           |
| 8   | 0 0     | 0 0              | 0 0              | 0 0              | 0 0              |
|     | 0 16    | 0 21             | 0 14             | 0 20             | 0 13             |
| 9   | 24.21   | 36.80            | 36.85            | 36.92            | 36.28            |
|     | (0.969) | (1.484)          | (1.543)          | (1.592)          | (1.614)          |
| 1 C | 0.773   | 1.047            | 1.045            | 1.050            | 1.127            |
|     | (0.227) | (0.242)          | (0.271)          | (0.267)          | (0.294)          |
| 11  | 0.548   | 0.378            | 0.379            | 0.402            | 0.359            |
|     | (0.204) | (0.139)          | (0.136)          | (0.144)          | (0.128)          |

TABLE 3. NO MINEFIELDS/DIRECT FIRE STATISTICS

# Prob Minefields/Direct Fire

### Unit Configuration

|   |    | 14/0/0           | 12/1/1           | 10/2/2           | 8/3/3            | 10/3/1           |
|---|----|------------------|------------------|------------------|------------------|------------------|
|   | 1  | 0.338<br>(0.127) | 0.292<br>(0.105) | 0.328<br>(0.147) | 0.317<br>(0.133) | 0.308<br>(0.430) |
|   | 2  | 0.105<br>(0.064) | 0.153<br>(0.076) | 0.170<br>(0.087) | 0.160<br>(0.084) | 0.174<br>(0.085) |
|   | 3  | 0.444<br>(0.152) | 0.446<br>(0.144) | 0.498<br>(0.181) | 0.477<br>(0.173) | 0.482<br>(0.184) |
|   | 4  | N/A              | 4.300<br>(2.126) | 2.380<br>(1.220) | 1.493<br>(0.782) | 2.435<br>(1.195) |
|   | 5  | N/A              | 8.190<br>(2.948) | 4.590<br>(2.056) | 2.963<br>(1.246) | 4.320<br>(1.997) |
| _ | 6  | N/A              | 12.49<br>(4.039) | 6.970<br>(2.538) | 4.457<br>(1.613) | 6.755<br>(2.570) |
|   | 7  | 74/200           | 71/200           | 77/200           | 85/200           | 81/200           |
|   | 8  | 1 4<br>27 42     | 0 0<br>10 61     | 0 4<br>12 61     | 0 0<br>11 84     | 0 12<br>4 65     |
| _ | 9  | 33.87<br>(11.37) | 40.02<br>(5.372) | 41.63<br>(9.287) | 40.45<br>(5.358) | 42.70<br>(13.29) |
|   | 10 | 2.096<br>(3.742) | 1.098<br>(0.300) | 1.015<br>(0.335) | 1.026<br>(0.305) | 1.062<br>(0.292) |
|   | 11 | 0.737<br>(0.160) | 0.615<br>(0.153) | 0.660<br>(0.148) | 0.648<br>(0.184) | 0.629<br>(0.151) |

Measure

TABLE 4. PROBABILITY OF MINEFIELDS/DIRECT FIRE STATISTICS

# 100% Minefields/Direct Fire

### Unit Configuration

|    | 14/0/0  | 12/1/1           | 10/2/2           | 8/3/3            | 10/3/1           |
|----|---------|------------------|------------------|------------------|------------------|
| 1  | 0.401   | 0.357            | 0.385            | 0.381            | 0.361            |
|    | (0.150) | (0.150)          | (0.124)          | (0.169)          | (0.142)          |
| 2  | 0.187   | 0.258            | 0.253            | 0.236            | 0.265            |
|    | (0.070) | (0.078)          | (0.053)          | (0.056)          | (0.064)          |
| 3  | 0.589   | 0.615            | 0.639            | 0.616            | 0.626            |
|    | (0.170) | (0.172)          | (0.135)          | (0.185)          | (0.157)          |
| 4  | N/A     | 7.230<br>(2.174) | 3.550<br>(0.739) | 2.203<br>(0.526) | 3.705<br>(0.896) |
| 5  | N/A     | 9.990<br>(4.198) | 5.395<br>(1.736) | 3.553<br>(1.579) | 5.060<br>(1.989) |
| 6  | N/A     | 17.22<br>(4.319) | 8.945<br>(2.056) | 5.757<br>(1.730) | 8.765<br>(2.193) |
| 7  | 124/200 | 131/200          | 145/200          | 142/200          | 152/200          |
| 8  | 2 21    | 0 11             | 0 14             | 0 10             | 0 8              |
|    | 50 50   | 24 96            | 12 119           | 24 108           | 28 116           |
| 9  | 46.14   | 46.90            | 47.00            | 46.27            | 46.18            |
|    | (14.68) | (12.52)          | (13.34)          | (12.49)          | (11.42)          |
| 10 | 1.617   | 1.314            | 1.045            | 1.022            | 1.030            |
|    | (0.445) | (0.305)          | (0.369)          | (0.373)          | (0.378)          |
| 11 | 0.729   | 0.740            | 0.771            | 0.744            | 0.762            |
|    | (0.161) | (0.114)          | (0.102)          | (0.137)          | (0.113)          |

Effectiveness

Measure

TABLE 5. 100% MINEFIELDS/DIRECT FIRE STATISTICS

# 100% Minefields/No Direct Fire

### Unit Configuration

|                   |    | 14/0/0           | 12/1/1           | 10/2/2           | 8/3/3            | 10/3/1           |
|-------------------|----|------------------|------------------|------------------|------------------|------------------|
| S                 | 1  | N/A              | N/A              | N/A              | N/A              | N/A              |
| es<br>es          | 2  | 0.213<br>(0.052) | 0.346<br>(0.093) | 0.356<br>(0.080) | 0.321<br>(0.062) | 0.368<br>(0.080) |
| /en               | 3  | 0.213<br>(0.052) | 0.346<br>(0.093) | 0.356<br>(0.080) | 0.321<br>(0.062) | 0.368<br>(0.080) |
| ctiv              | 4  | N/A              | 9.700<br>(2.619) | 4.990<br>(1.116) | 2.997<br>(0.578) | 5.155<br>(1.126) |
| ffe               | 5  | N/A              | N/A              | N/A              | N/A              | N/A              |
| Ш<br><del>У</del> | 6  | N/A              | 9.700<br>(2.619) | 4.990<br>(1.116) | 2.997<br>(0.578) | 5.155<br>(1.126) |
| Of                | 7  | 2/200            | 44/200           | 35/200           | 14/200           | 35/200           |
| ure               | 8  | 0 2<br>0 0       | 0 0<br>15 29     | 0 0<br>0 35      | 0 0<br>0 14      | 0 0<br>0 35      |
| SD                | 9  | 62.83<br>(4.738) | 49.91<br>(7.878) | 44.15<br>(1.408) | 44.08<br>(0.798) | 43.92<br>(1.153) |
| $\overset{A}{=}$  | 10 | 0.218<br>(0.022) | 0.217<br>(0.027) | 0.215<br>(0.028) | 0.214<br>(0.024) | 0.214<br>(0.022) |
|                   | 11 | 0.192<br>(0.056) | 0.396<br>(0.119) | 0.452<br>(0.102) | 0.409<br>(0.083) | 0.470<br>(0.105) |

TABLE 6. 100% MINEFIELDS NO DIRECT FIRE STATISTICS

# MEASURE OF EFFECTIVENESS 1 % LOSSES TO DF



4 SCENARIOS: MINEFIELDS/DIRECT FIRE

Figure 12. Model 1 Measure of Effectivess 1

# MEASURE OF EFFECTIVENESS 2 % LOSSES TO MINES



Figure 13. Model 1 Measure of Effectiveness 2





4 SCENARIOS: MINEFIELDS/DIRECT FIRE

Figure 14. Model 1 Measure of Effectiveness 3

# MEASURE OF EFFECTIVENESS 4 # MINE CAS PER PIECE



Figure 15. Model 1 Measure of Effectiveness 4

# DF CAS PER PIECE



Figure 16. Model 1 Measure of Effectiveness 5

TOTAL # CAS PER PIECE



Figure 17. Model 1 Measure of Effectiveness 6

% UNITS TO DEFENSE



4 SCENARIOS: MINEFIELDS/DIRECT FIRE

Figure 18. Measure of Effectiveness 7





Figure 19. Model 1 Measure of Effectiveness 8

# MEASURE OF EFFECTIVENESS 9 AVG LENGTH OF BATTLE



Figure 20. Model 1 Measure of Effectiveness 9

AVG END RANGE OF BATTLE



+ SCENARIOS. MINERIELOS/ DIRECT TIRE

Figure 21. Model 1 Measure of Effectiveness 10

RATE OF BATTLE LOSSES



Figure 22. Model 1 Measure of Effectiveness 11

## MODEL 2 STATISTICS

### Unit Configuration

12/1/1

Effectiveness

of

Measure

10/2/2

|    |                  |                  |   | ,                | ,                |
|----|------------------|------------------|---|------------------|------------------|
|    | PROB/DF          | 100%/<br>NO DF   |   | PROB/DF          | 100%/<br>NO DF   |
| 1  | 0.305<br>(0.112) | N/A              |   | 0.343<br>(0.114) | N/A              |
| 2  | 0.098<br>(0.054) | 0.241<br>(0.102) |   | 0.125<br>(0.086) | 0.257<br>(0.973) |
| 3  | 0.403<br>(0.134) | 0.241<br>(0.102) |   | 0.469<br>(0.162) | 0.257<br>(0.973) |
| 4  | 2.760<br>(1.532) | 6.750<br>(2.856) |   | 1.755<br>(1.207) | 3.600<br>(1.363) |
| 5  | 8.540<br>(3.134) | N/A              |   | 4.810<br>(1.601) | N/A              |
| 6  | 11.30<br>(3.751) | 6.750<br>(2.856) |   | 6.565<br>(2.267) | 3.600<br>(1.363) |
| 7  | 64/200           | 35/200           | * | 91/200           | 32/200           |
| 8  | 0 0<br>4 60      | 0 0<br>20 15     |   | 0 0<br>6 85      | 0 0<br>0 32      |
| 9  | 43.02<br>(3.620) | 55.18<br>(7.512) |   | 43.71<br>(3.805) | 48.44<br>(2.251) |
| 10 | 1.084<br>(0.438) | 0.223<br>(0.022) |   | 1.122<br>(0.297) | 0.219<br>(0.027) |
| 11 | 0.518<br>(0.144) | 0.245<br>(0.101) |   | 0.590<br>(0.161) | 0.298<br>(0.112) |

TABLE 7 MODEL 2 STATISTICS

# MEASURE OF EFFECTIVENESS 1 MODEL 1 VERSUS MODEL 2

### % LOSSES TO DF



### % LOSSES TO DF



2 SCENARIOS: MINEFIELDS/DIRECT FIRE

Figure 23. Model 1 versus Model 2
Measure of Effectiveness 1

# MEASURE OF EFFECTIVENESS 2 MODEL 1 VERSUS MODEL 2

### % LOSSES TO MINES



2 SCENARIOS: MINEFIELDS/DIRECT FIRE

### % LOSSES TO MINES



Figure 24. Model 1 versus Model 2
Measure of Effectiveness 2

# MEASURE OF EFFECTIVENESS 3 MODEL 1 VERSUS MODEL 2

### % LOSSES TOTAL



### % LOSSES TOTAL



Figure 25. Model 1 versus Model 2
Measure of Effectiveness 3

# MEASURE OF EFFECTIVENESS 4 MODEL 1 VERSUS MODEL 2

### # MINE CAS PER PIECE



### # MINE CAS PER PIECE



Figure 26. Model 1 versus Model 2
Measure of Effectiveness 4

# MEASURE OF EFFECTIVENESS 5 MODEL 1 VERSUS MODEL 2





2 SCENARIOS: MINEFIELDS/DIRECT FIRE

### # DF CAS PER PIECE



2 SCENARIOS: MINEFIELDS/DIRECT FIRE

Figure 27. Model 1 versus Model 2 Measure of Effectiveness 5

# MEASURE OF EFFECTIVENESS 6 MODEL 1 VERSUS MODEL 2

### TOTAL # CAS PER PIECE



### TOTAL # CAS PER PIECE



Figure 28. Model 1 versus Model 2

Measure of Effectiveness 6

# MEASURE OF EFFECTIVENESS 7 MODEL 1 VERSUS MODEL 2

### % UNITS TO DEFENSE



### 2 SCENARIOS: MINEFIELDS/DIRECT FIRE

### % UNITS TO DEFENSE



Figure 29. Model 1 versus Model 2 Measure of Effectiveness 7

# MEASURE OF EFFECTIVENESS 8 MODEL 1 VERSUS MODEL 2

# UNITS TO DEFENSE IN EACH PHASE OF BATTLE # UNITS 70 80 14/0/0 21/1/1/MODEL 1 12/1/1/MODEL 2

### UNITS TO DEFENSE IN EACH PHASE OF BATTLE $\phi_{\rm UNITS}$





PROB MINEFIELDS/DIRECT FIRE



### UNITS TO DEFENSE IN EACH PHASE OF BATTLE $\phi$ units



Figure 30. Model 1 versus Model 2
Measure of Effectiveness 8

# MEASURE OF EFFECTIVENESS 9 MODEL 1 VERSUS MODEL 2

### AVG LENGTH OF BATTLE



### AVG LENGTH OF BATTLE



Figure 31. Model 1 versus Model 2
Measure of Effectiveness 9

# MEASURE OF EFFECTIVENESS 10 MODEL 1 VERSUS MODEL 2

### AVG END RANGE OF BATTLE



### AVG END RANGE OF BATTLE



Figure 32. Model 1 versus Model 2
Measure of Effectiveness 10

# MEASURE OF EFFECTIVENESS 11 MODEL 1 VERSUS MODEL 2

### RATE OF BATTLE LOSSES



### RATE OF BATTLE LOSSES



Figure 33. Model 1 versus Model 2
Measure of Effectiveness 11

### V. SUMMARY, FUTURE ENHANCEMENTS, AND UTILIZATION

### A. SUMMARY

The model, as developed, examines a limited number of different scenarios, tactics and equipment configurations. The combinations examined are by no means all encompassing. Continued analysis using the model as developed will provide answers to many mine/countermine questions concerning equipment and doctrine.

The model is a high resolution stochastically based simulation with a minimal amount of background routines to support the minefield breaching logic. While it will not answer all the questions concerning the basis of issue of countermine equipment, it does improve the analyst's ability to make decisions regarding the effectiveness of the mine/countermine equipment configurations.

### B. FUTURE ENHANCEMENTS

The following additions or improvements to the model are recommended:

- Addition of indirect fire to suppress both forces and allow smoke to be used to obscure the breaching sites through the minefields.
- 2. Development of a red movement network so a blue counterattack scenario may be examined.
- 3. A better method of controlling the breaching equipment during the conduct of the breach is required. At present the equipment must stay in the order input in the data file. Therefore if a unit has two mineplow tanks and a mineroller tank, and if the first mineplow clears a lane, the proofing vehicle would be a mineplow tank if it was entered

second in the file, as opposed to the mineroller tank as called for by doctrine.

- 4. A more accurate method of determining the destruction of a piece of breaching equipment is required. In the simulation, if one side of a mineplow or mineroller is rendered inoperable, then the entire system is considered lost. Additionally, the probability of surviving a mine detonation could be considered cumulative in nature, where the probability of surviving the first mine detonation to a breaching system may be higher than surviving the second etc.
- 5. The assumption of perfect knowledge concerning the extent of the minefield when it is identified does not accurately model the real world. A method of dealing with unclear or unknown boundaries of an obstacle must be developed to better simulate the actions of a unit encountering the minefield.

### C. UTILIZATION

The model as it currently exists may be used to develop, examine and verify tactics. The placement of equipment within a formation, how far in the lead the mineroller should be placed and other tactics may be examined. Formations may dictate the number of breaching assets required. If the breaching equipment is in the forward platoons but not employed, they may encounter a minefield and be rendered inoperative prior to commencement of breaching operations. By changing the depths of the minefield, problems concerning the angle of attack on an obstacle may be examined.

The output generated by this model provides the appropriate information in the proper format required for more analytical models. One such model is a Semi-Markov

Renewal Process which aggregates high resolution data into various transition matrices. [Ref. 13]

Therefore, not only is the model useful as developed to investigate the issuance of countermine equipment, but may also be used in all areas concerning minefields and the tactics used to counter the obstacle.

### APPENDIX A DEFINITION OF MODEL ONE VARIABLES

The variables used in Model 1 are defined below. All variables are either integer or single precision. The only double precision variable used in the model was the seed for the random number generator.

| AAA               | <br>Speed adjustment factor to maintain movement control.                                                                                                                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTIVE1, ACTIVE2  | <br>The first 2 elements of a unit entering a minefield; they are the candidates for detonating a mine.                                                                                         |
| ANGLE             | <br>Heading in radians of the arcs in the network.                                                                                                                                              |
| ARC               | <br>Line connecting 2 nodes, supporting the movement of the units.                                                                                                                              |
| AVE               | <br>Avenue of approach, consisting of a series of arcs from the movement network.                                                                                                               |
| BEHIND            | <br>Binary variable; it is 1 when AAA is greater than 1; 0 otherwise.                                                                                                                           |
| BLUECODE, REDCODE | <br>Status code of the unit; for the blue force it may be; 0-defensive posture, 1-assault formation, 2-breaching formation. For the red force, if it equals 0 the unit is not combat effective. |

BLUEDETECT1, REDDETECT1,2

-- The numerical identifier of the elements on the firer's detection list.

BLUENEGAGE, REDENGAGE

-- Number of elements in one force detecting or engaging an element of the opposing force. Up to four blue elements may detect/engage a single red element while only two red elements may detect a single blue element.

BLUEPDET, REDPDET

-- Probability of detecting an opposing element using the detection rate, DETRATE.

BLUERMAX, RMAX

-- Maximum effective engagement ranges for the weapons systems; user input variables.

BLUESTATUS, REDSTATUS

-- Indicates the current status of an element, the status may be: 0element is dead, 1-element is in the detecting phase, 2-element is in the firing phase.

BLUEX1POS, BLUEY1POS

-- Actual x,y coordinates of elements in each blue unit.

BLUEXOFF\_,BLUEYOFF\_

-- These values represent the offset distances in the x direction and y direction from the control vehicle. There is an x distance and a y distance for each of the three formations and are user input.

BLUEXPOS, BLUEYPOS

-- Actual x,y coordinates of the control vehicle in each of the blue units.

BPHITS, BPKILL

-- The probabilities associated with hitting and killing a red target using the range to delineate the probabilities.

BULL1,BULL2

-- Status indicators to determine if a unit is bulling through a minefield.

**BVEHORDER** 

-- An array which stores the order of the units as read from the data file.

BYPASS1, BYPASS2

-- Status indicators to determine if a unit is bypassing a minefield.

**CLOCK** 

-- Keeps track of the time of battle.

CLOSE

-- Binary variable used in conjunction with the AAA variable.

| CO | DE | 0 |
|----|----|---|
|----|----|---|

-- Records the time a unit goes to a defensive posture.

CV

-- Crossing velocity; used in the detection module and represents the component of movement perpendicular to the targetobserver line-of-sight.

DELX, DELY

-- Represents the distance in the x and y directions the control vehicle moves during a single time step.

DENSMINE1, DENSMINE2

-- Represents the densities of the near and far minefields; it is user input.

DEPMINE1, DEPMINE2

-- The depth of a minefield, based on the maximum and minimum depth parameters and a Monte Carlo draw.

DETRATE

-- The rate at which a detection can occur, used in calculation of the probability of detecting a vehicle.

DFKILL

-- Counter to keep track of the number of direct fire kills per repetition.

**DFTYPE** 

-- Counter to keep track of the total number of direct fire kills by type over each repetition.

DIST

-- Actual length of each arc; user input as part of the network.

DISTANCE

-- Cumulative distance traveled along an arc.

DISTDET1, DISTDET2

-- Represents the distance to next detonation of a mine; used in both the initial entry to a minefield routine and during breaching operations.

ENTRY1, ENTRY2

-- Variables used to determine when a minefield has been entered.

| EQUIP                | Used in the Unit Status subroutine to aid in tabulating types of equipment in the unit.                       |
|----------------------|---------------------------------------------------------------------------------------------------------------|
| HEAD                 | Head of an arc; a node number.                                                                                |
| HEIGHT, RHEIGHT      | Represents the actual heights of<br>the equipment in the various<br>units; user input.                        |
| LAG                  | User input value representing the<br>maximum range deviation in the<br>assaulting units.                      |
| LOC                  | Represents the current arc location of the unit.                                                              |
| MAXDEPTH1, MAXDEPTH2 | User input; the maximum depths of minefields 1 and 2.                                                         |
| MINDEPTH1, MINDEPTH2 | User input; the minimum depths of minefields 1 and 2.                                                         |
| MINE1,MINE2          | User input; the arcs on which the minefields located.                                                         |
| MINEDET1, MINEDET2   | User input; the probabilities<br>associated with detecting the<br>presence of a minefield.                    |
| MINEKILL             | Counter to keep track of the number of kills due to mine detonations per repetition.                          |
| MINEPK               | User input; the probability that a mine kills a tank given detonation.                                        |
| MOVE                 | Cumulative distance indicator<br>that keeps track of the distance<br>a unit has moved through a<br>minefield. |
| NARC                 | Number of arcs in the network.                                                                                |
| NNODE                | Number of nodes in the network.                                                                               |
| NODE                 | Specific number of a node.                                                                                    |

NUMBLUE, NUMRED

-- Number of blue elements per unit and the total number of red elements.

NUNIT

-- Number of blue units in the simulation.

PDETONAT4

-- User input; the probability of a mine detonating when cleared by a breaching device.

PCLEAR4, PCLEAR5

-- Probabilities of a breaching device clearing a mine given an encounter.

PSURVIV4, PSURVIV5

-- Probabilities of surviving an encounter with a mine.

PDETTNK4, PDETTNK5

-- The cumulative probability of clearing a mine, either by the breaching device or detonation by the carrier.

PMINE1.PMINE2

-- User input; the probabilities of a minefield being emplaced, also interpreted the probabilities of encountering a minefield given it is emplaced.

PRCNTEFFB, PRCNTEFFR

-- Used in the Unit Status subroutine, they keep track of the combat effectiveness of the units.

RANGE

-- Range is calculated throughout the simulation and is the distance from blue element to red element.

REDX, REDY

-- Represents the center of mass of the red position in the x,y plane.

REDXPOS, REDYPOS

-- User input; the locations of the red elements in the x,y plane.

**RNGADJ** 

-- The calculated adjusted range to a target based on the range adjustment factors input into the detection model.

**RNGAPP** 

-- The calculated apparent range to a target based on the percent of the target that is visible to the observer.

-- Ranges to the detected elements RNGDET1, RNGDET2 in the blue force; used to determine which vehicles go on the red elements' detected list. RNGMAX, RNGMIN -- At any given time step the blue units are in the interval [RNGMIN, RNGMAX] which is the distance from the enemy. -- User input; the probability that RPLOOK a red element is looking in the direction of the target. **SPEED** -- User input; the maximum speed each vehicle type is able to maintain on each arc based on terrain characteristics. STATMIN1, STATMIN2 -- Binary variables; used to indicate the status of minefields. TAU -- Terrain complexity code ranging from 1 to 7; used in the probability of detection equation. RPHITM, RPKILL -- The probabilities associated with hitting and killing a blue target using range to delineate the probabilities. PHIT, PKILL -- The actual values calculated from the table look-up which are then compared to a random number draw. -- Range adjustment factors for the RRAF, RAF red and blue forces; used to calculated adjusted ranges for

each target.

TDFKILL, TMINEKILL -- Total number of kills over the 50 repetitions due to direct fire and mines, respectively.

TPLOWKILL, TROLLKILL

-- Total number of mineplows and minerollers killed over the 50 repetitions due to mine detonations. These represent only the breaching device being destroyed, not the carrier.

TPLOWBRCHKILL,
TROLLBRCHKILL

-- Total number of mineplow carriers and mineroller carriers killed by mine detonations over the 50 repetitions while conducting breaching operations.

TKILL

-- Total number of kills due to all causes over a single repetition.

TTKILL

-- A tabulating variable used in the output file, representing the total number of kills of all types over fifty repetitions.

UNIT

-- Counter to track which is the current unit; the simulation will allow up to 10 units.

UNITSPD

-- The speed the unit moves based on formation, location and equipment.

VEHTYPE, RVEHTYP

-- These variables are coded for the type of vehicles in the units. The blue force has five types as discussed in Chapter 3 while the red force has two vehicle types; a BMP and a tank.

WIDTH

-- The width is the effective width of the vehicle entering a minefield and is used in the calculation of the distance to a mine encounter.

XNODE, YNODE

-- These values represent the X and Y grid coordinates of the nodes in the network.

XOFFPLT, YOFFPLT

-- The x,y offsets used in the OFFSET subroutine to calculate the actual x,y coordinates.

## APPENDIX B

# COMPUTER PROGRAM LISTING

```
* SIMULATION MAIN PROGRAM
                                                                         VARIABLE DECLARATION XXXXXXXXXXXXXXXXXXXX
                                                          TAIL, HEAD, NODE, NNODE, ARC, BLUECODE, REDCODE, DEF
AVE, START, NUNIT, LOC, NUMRED, REDENGAGE, STATMIN1, ENTRY1
NARC, ISTART, LAST, UNIT, RED, REDSTATUS, VEHTYPE, RVEHTYPE
                             INTEGER
1234567890123456789012345678901234567
                             INTEGER
                             INTEGER
                                                          BUESTATUS, ELEMENT, POSITION, NUMBLUE, CLOSE, BEHIND, REP
REDDETECT1, REDDETECT2, BLUEENGAGE, BLUEDETECT1, MINE1
BVEHORDER, BULL1, BULL2, BYPASS1, MINE2, STATMIN2, ENTRY2
                             INTEGER
                             INTEGER
                             INTEGER
                                             BYEHUNDER, BULLI, BULLZ, BTPASSI, MINEZ, STATMINZ, ENTRYZ

R BYPASSZ, MINEKILL, DFKILL, ROLLKILL, PLOWKILL, ROLLBRCHKILL

R TMINEKILL, TDFKILL, TROLLKILL, TPLOWKILL, TROLLBRCHKILL

R PLOWBRCHKILL, TPLOWBRCHKILL, TKILL, TTKILL, DFTYPE, MTYPE

WIDTH, DIST, ANGLE, XNODE, YNODE, CLOCK, SP, BLUEXOFFI, BLUEYOFFI

BLUEXOFF2, BLUEYOFF2, BLUEXIPOS, BLUEYIPOS, REDXPOS, REDYPOS

BLUEXOFF0, BLUEYOFF0, MINDEPTH1, MAYDEPTH1, RNG, CODEO

BLUEXOFF0, BLUEYOFFO, MINDEPTH1, MAYDEPTH1, RNG, CODEO
                             INTEGER
                             INTEGER
                             INTEGER
                            REAL
REAL
                             REAL
                                              DELX, DELY, TRAVEL, SPEED, DISTANCE, CV, UNITSPD, RHEIGHT, RRAF RPLOOK, REDX, REDY, BLUEXPOS, BLUEYPOS, LAG, AAA, RMAX
                            REAL
                            REAL
                                             DENSMINEI, PMINEI, DISTDETI, DEPMINEI, MINDEPTH2, MAXDEPTH2
BLUERMAX, DENSMINE2, PMINE2, DISTDET2, DEPMINE2
RPHITS, RPHITM, RPKILL, BPHITS, BPKILL
                            REAL
                            REAL
                            REAL
                          REAL*8 DSEED

DIMENSION TAIL(150), HEAD(150), TIME(150), AVE(10,30), BULLI(10)

DIMENSION FLOW(100), DIST(100), WIDTH(100), ISTART(10), BYPASS1(10)

DIMENSION ARC(100), SP(100), ANGLE(100), DISTANCE(10), CV(10)

DIMENSION NODE(150), XNODE(150), YNODE(150), BLUEDETECT1(10,20)

DIMENSION BLUEXPOS(20), BLUEYPOS(20), RHEIGHT(30), RRAF(30), RMAX(30)

DIMENSION SPEED(10,80), BLUEYOFF1(20), BLUEXOFF1(20), LOC(10)

DIMENSION BLUEXOFF2(20), BLUEYOFF2(20), RVEHTYP(30), BLUECODE(10)

DIMENSION BLUEXOFF0(20), BLUEYOFF0(20), STATMIN1(10), MINE1(10)

DIMENSION BLUEXIPOS(10,20), BLUEYIPOS(10,20), BLUESTATUS(10,20)

DIMENSION REDXPOS(50), REDYPOS(50), RPLOOK(10,50), UNITSPD(10)

DIMENSION RED(50), REDSTATUS(30), VEHTYPE(10,20), REDENGAGE(100)

DIMENSION REDDETECT1(30), REDDETECT2(30), BLUEENGAGE(30), MINE2(10)

DIMENSION PMINE2(10), DISTDET2(10,100), DEPMINE2(10), ENTRY2(10)
                            REAL×8
                                                    DSEED
                           DIMENSION PMINE2(10), DISTDET2(10,100), DEPMINE2(10), ENTRY2(10)
DIMENSION PMINE1(10), DISTDET1(10,100), DEPMINE1(10), ENTRY1(10)
DIMENSION RPHITS(10), RPHITM(10), RPKILL(10), BPHITS(10), BPKILL(10)
DIMENSION BVEHORDER(10,20), RNG(20), STATMIN(2(10), BYPASS2(10)
                           DIMENSION BULL2(10), MINEKILL(100), DFKILL(100), ROLLKILL(100)
DIMENSION PLOWKILL(100), ROLLBRCHKILL(100), PLOWBRCHKILL(100)
                            DIMENSION BLUERMAX(10,20),DFTYPE(20),MTYPE(20),CODEO(10),DEF(10)
                                                                                   , FILE = 'SIMUL')
, FILE = 'RESULTS')
, FILE = 'OUTPUT')
, FILE = 'MINETIME')
, FILE = 'TIMEMINE')
                                     OPEN (UNIT = 54 ,
 38
 39
                                    OPEN
                                                   (UNIT =
                                                                           44
 40
                                     OPEN
                                                   (UNIT =
                                                                           34
41
42
                                    OPEN (UNIT = OPEN (UNIT =
                                                                           24
23
          SET START NODE
                                    START
                                                      SET LAST NODE
= 29
                                    LAST
                                                      TOTAL NUMBER OF ARCS IN THE SECTOR
45
                                    NARC
                                                          = 31
                                                      TOTAL NUMBER OF NODES IN THE SECTOR
46
                                    NNODE
```

NUMBER OF AVENUES OF APPROACH

```
NUNIT = 4
47
                        NUMBER OF RED ELEMENTS
48
                NUMRED = 13
                        NUMBER OF BLUE ELEMENTS IN EACH UNIT
49
                 NUMBLUE=14
         SET INITIAL CONDITIONS
    *SET RANDOM NUMBER SEED
50
                     DSEED=1029395.D0
    *SET TERRAIN CODE
                     TAU = 3.5
51
    ********* READ DATA FROM DATA FILES ******************
            READ(1,100) (ARC(I),TAIL(I),HEAD(I),DIST(I),ANGLE(I),I=1,NARC)
FORMAT(2X,I3,3X,I2,3X,I2,4X,F4.2,3X,F5.3)
READ(2.200) (NODE(I),XNODE(I),YNODE(I),I=1,NNODE)
52
53 100
54
55 200
            FORMAT(2X, 13, 2X, F5.0, 1X, F5.0)
            READ(3,300)((AVE(K,I),K=1,4),I=1,13)
FORMAT(2X,I3,2X,I3,2X,I3,2X,I3)
56
57 300
            READ(4,400)((SPEED(K,I),K=1,5),I=1,NARC)
FORMAT(2X,5F4.0)
59 400
            READ(9,500) (BLUEXOFFO(I), BLUEYOFFO(I), I=1, NUMBLUE)
READ(10,500) (BLUEXOFF1(I), BLUEYOFF1(I), I=1, NUMBLUE)
READ(11,500) (BLUEXOFF2(I), BLUEYOFF2(I), I=1, NUMBLUE)
60
61
62
            FORMAT(2X, F5.2, 2X, F5.2)
63 500
64
65 550
            READ(17,550) (BPHITS(I), BPKILL(I), I=1,8) FORMAT(2X,F4.2,2X,F4.2)
            READ(12,600) (RED(I), REDXPOS(I), REDYPOS(I), I=1, NUMRED)
67 600
            FORMAT (2X,12,2X,F5.1,2X,F5.1)
            READ(13,700) ((RPLOOK(K,I),K=1,NUNIT),I=1,NUMRED)
69 700
            FORMAT(2X,4F6.2)
            READ(14,800) ((BVEHORDER(K,I),K=1,NUNIT),I=1,NUMBLUE)
71 800
            FORMAT(2X, I1, 2X, I1, 2X, I1, 2X, I1)
            READ(15,900) (RVEHTYP(I), RHEIGHT(I), RRAF(I), RMAX(I), I=1, NUMRED)
73 900
            FORMAT(2X, I1, 2X, F3.1, 2X, F3.1, 2X, F3.1)
            READ(16,950) (RPHITS(I),RPHITM(I),RPKILL(I),I=1,9)
FORMAT(2X,F4.2,2X,F4.2,2X,F4.2)
75 950
76
77
                 TROLLBRCHKILL=0
                 TPLOWBRCHKILL=0
78
                 TMINEKILL=0
79
                 TDFKILL=0
                 TROLLKILL=0
81
                 TPLOWKILL=0
```

```
82
                  DO 181 REP=1,50
  83
84 928
                   WRITE(54,928) REP
                    FORMAT( ******** REPITITION NUMBER ', 13' *********)
      START SIMULATION
                     RNGMIN = 20.0
  85
                     MINEKILL(REP)=0
                     DFKILL(REP)=0
  87
                     DFTYPE(1)=0
DFTYPE(2)=0
DFTYPE(3)=0
  88
  89
  90
  91
92
93
                    DFTYPE(4)=0
DFTYPE(5)=0
MTYPE(1)=0
                    MTYPE(2)=0
MTYPE(3)=0
  94
  96
                     PLOWKILL (REP)=0
                     ROLLKILL(REP)=0
ROLLBRCHKILL(REP)=0
  97
 98
  99
                     PLOWBRCHKILL(REP)=0
100
                   CLOCK = 0.0
                   REDX=XNODE(26)
101
                   REDY=YNODE(26)
102
103
                   REDCODE = 1
     *MINEFIELD NUMBER 1 LOCATIONS
104
                   MINE1(1)=10
                   MINE1(2)=9
MINE1(3)=17
105
106
107
                   MINE1(4)=22
                   MINDEPTH1=150
MAXDEPTH1=300
108
109
110
                   DENSMINE1 = . 003
                   PMINE1(1)=0.70
PMINE1(2)=0.70
PMINE1(3)=0.70
111
112
113
                   PMINE1(4)=0.70
     *MINEFIELD NUMBER 2 LOCATIONS
                   D NUMBER 2 LOC
MINE2(1)=13
MINE2(2)=12
MINE2(3)=26
MINE2(4)=24
MINDEPTH2=200
115
116
117
118
119
120
121
122
123
124
125
                   MAXDEPTH2=300
                   DENSMINE2=.02
                   PMINE2(1)=0.90
PMINE2(2)=0.90
PMINE2(3)=0.90
PMINE2(4)=0.90
126
127
                DO 40 UNIT=1, NUNIT
```

BLUECODE(UNIT) = 1

```
128
                  DEF(UNIT)=0
129
130
                  CODEO(UNIT)=0
                  ISTART(UNIT)=1
                  LOC(UNIT) = AVE(UNIT, 1)
131
                  BLUEXPOS(UNIT) = XNODE(TAIL(LOC(UNIT)))
BLUEYPOS(UNIT) = YNODE(TAIL(LOC(UNIT)))
132
133
                  DISTANCE(UNIT)=0.0
135
                  UNITSPD(UNIT)=0.0
                  STATMIN1(UNIT)=0
STATMIN2(UNIT)=0
136
                  ENTRY1(UNIT)=0
                  ENTRY2(UNIT)=0
                  BULL1(UNIT)=0
                  BYPASSI(UNIT)=0
BULL2(UNIT)=0
                  BYPASS2(UNIT)=0
143
              DO 47 POSITION=1, NUMBLUE
144
145
                  VEHTYPE(UNIT, POSITION) = BVEHORDER(UNIT, POSITION)
                  BLUESTATUS (UNIT, POSITION) =1
                  REDENGAGE((NUMBLUE*(UNIT-1))+POSITION)=0
    ***********************************
                  BLUERMAX(UNIT, POSITION) = 3.0
149 47
              CONTINUE
150 40
              CONTINUE
151
              DO 13 ELEMENT=1, NUMRED
                  REDSTATUS(ELEMENT)=1
152
                  BLUEENGAGE(ELEMENT)=0
153
             CONTINUE
154 13
                     SIMULATION START
                                              ********
    ******
                    CALL MINESETUP (UNIT, NUNIT, DSEED, PMINE1, STATMIN1, MINDEPTH1, MAXDEPTH1, DEPMINE1, DENSMINE1, DISTDET1, PMINE2, STATMIN2, MINDEPTH2, MAXDEPTH2,
155
           ×
                            DEPMINE2, DENSMINE2, DISTDET2)
156
            DO 20 J=1,200
157
                       CLOCK=CLOCK+.5
                 CALL UNITSTATUS(BLUECODE, REDCODE, UNIT, NUNIT, POSITION, NUMBLUE,
158
                         BLUESTATUS, REDSTATUS, NUMRED, ELEMENT, VEHTYPE, CLOCK, REP,
                         RNGMIN)
    * CHECKS TO DETERMINE IF BATTLE TERMINATION CRITERIA HAS BEEN MET
                 IF (REDCODE .EQ. 0) GO TO 179
CALL LOCATION ( LAG, UNIT, NUNIT, BLUEXPOS, BLUEYPOS, RNG,
159
160
                                 RNGMIN, REDX, REDY, AAA, CLOSE, BEHIND, BLUECODE)
                 IF(RNGMIN .LT. .250) THEN CALL UNITSTATUS(BLUECODE, REDCODE, UNIT, NUNIT, POSITION, NUMBLUE,
161
162
                         BLUESTATUS, REDSTATUS; NUMRED, ELEMENT, VEHTYPE, CLOCK, REP,
                         RNGMIN)
163
                         END IF
```

```
* ENTER MOVEMENT ROUTINE
                   DO 30 UNIT=1, NUNIT
165
      *CHECK TO SEE IF UNIT HAS ENTERED MINEFIELD; 30 SECOND MOVEMENT DELAY IF(ENTRY1(UNIT) .EQ. 1) THEN
166
                                 ENTRY1(UNIT)=2
167
168
                                 GO TO 30
169
                          END IF
                          IF(ENTRY2(UNIT) .EQ. 1) THEN ENTRY2(UNIT)=2
170
171
172
                                 GO TO 30
                          END IF
173
                    CALL MOV1 (LOC, TAIL, XNODE, YNODE, SPEED, TRAVEL, ANGLE, AVE, DIST,
174
                              NODE, ISTART, DISTANCE, BLUEXPOS, BLUEYPOS, CLOCK, UNIT, BLUEXOFF1, BLUEYOFF1, BLUEXOFF2, BLUEYOFF2, ENTRY1,
             ×
             ×
                              BLUEXIPOS, BLUEYIPOS, UNITSPD, NUMBLUE, VEHTYPE, AAA
                              CLOSE, BEHIND, BLUECODE, BLUEXOFFO, BLUEYOFFO, DEPMINE1, MINE1, STATMIN1, DSEED, BLUESTATUS, DISTDET1, REDX, REDY,
             ×
             ×
                              BLUEDETECT1, RNG, BULL1, BYPASS1, ENTRY2, DEPMINE2, MINE2,
                              STATMIN2, DISTDET2, BULL2, BYPASS2, MINEKILL, ROLLKILL,
                              PLOWKILL, ROLLBRCHKILL, PLOWBRCHKILL, REP, MTYPE)
                   CONTINUE
175 30
     * RED DETECT/FIRE ROUTINE ENTERED
DO 43 ELEMENT=1, NUMRED
IF (REDSTATUS(ELEMENT) .EQ. 0) THEN
176
177
                                  GO TO 43
178
                         ELSE IF (REDSTATUS(ELEMENT) .EQ. 2) THEN
179
              CALL REDFIRE(REDSTATUS, ELEMENT, REDENGAGE, BLUESTATUS, UNIT,
180
                             POSITION, NUMBLUE, REDXPOS, REDYPOS, NUNIT, VEHTYPE, REDDETECT1, REDDETECT2, BLUEX1POS, BLUEY1POS, DSEED, CLOCK,
             ×
                             RVEHTYP, RPHITS, RPHITM, RPKILL, DFKILL, REP, DFTYPE)
             ¥
181
                           GO TO 43
182
                          END IF
                    CALL REDDETECT (REDXPOS, REDYPOS, BLUEXPOS, BLUEYPOS,
183
                                BLUEXIPOS, BLUEYIPOS, NUNIT, REDENGAGE, BLUESTATUS,
                               ANGLE, UNIT, UNITSPD, CLOCK, LOC, CV, NUMRED, NUMBLUE, REDX, REDY, RED, RPLOOK, REDSTATUS, DSEED, VEHTYPE, REDDETECT1, REDDETECT2, ELEMENT, POSITION, TAU, RVEHTYP,
             ×
             ¥
                                BLUECODE, RMAX)
184 43
                 CONTINUE
     * BLUE DETECT/FIRE ROUTINE ENTERED
DO 63 UNIT=1,NUNIT
DO 69 POSITION=1,NUMBLUE
185
186
                         IF (BLUESTATUS (UNIT, POSITION) .EQ. 0) THEN
187
188
                                  GD TO 69
                        ELSE IF (VEHTYPE(UNIT, POSITION)
                                          ÍTÝPE(UNIT,POSITION) .EQ. 4 .OR.
VEHTYPE(UNIT,POSITION) .EQ. 5) THEN
189
                        GO TO 69
ELSE IF (BLUESTATUS(UNIT, POSITION) .EQ. 2) THEN
190
191
```

```
CALL BLUEFIRE(REDSTATUS, ELEMENT, BLUEENGAGE, BLUESTATUS, UNIT,
192
                        POSITION, REDXPOS, REDYPOS, RVEHTYP, BLUEDETECTI, BLUEXIPOS, BLUEYIPOS, DSEED,
          ×
                        CLOCK, BPHITS, BPKILL)
          ¥
193
                     GO TO 69
194
                    END IF
             CALL BLUEDETECT (REDXPOS, REDYPOS, BLUEX1POS, BLUEY1POS,
195
                     BLUEENGAGE, BLUESTATUS, REDSTATUS, DSEED, UNIT, CLOCK, NUMRED,
                     BLUEDETECTI, ELEMENT, POSITION, TAU, RVEHTYP, RHEIGHT, RRAF,
          ×
          ×
                     BLUERMAX)
196 69
197 63
             CONTINUE
             CONTINUE
    *CHECK TO SEE TIME UNIT GOES TO DEFENSIVE POSTURE
198
               DO 159 UNIT=1, NUNIT
                              CODE(UNIT) .EQ. O .AND. DEF(UNIT) .EQ. O) THEN CODEO(UNIT) = CLOCK
199
                     IF (BLUECODE(UNIT)
200
                              DEF(UNIT) = 1
201
202
                     END IF
203 159
204 20
               CONTINUE
           CONTINUE
    * RUNNING TOTAL OF LOSSES
179 TDFKILL=TDFKILL+DFKILL(REP)
205
206
                    TMINEKILL=TMINEKILL+MINEKILL(REP)
                    TROLLKILL=TROLLKILL+ROLLKILL(REP)
207
                    TPLOWKILL=TPLOWKILL+PLOWKILL(REP)
208
209
                    TROLLBRCHKILL=TROLLBRCHKILL+ROLLBRCHKILL(REP)
210
                    TPLOWBRCHKILL=TPLOWBRCHKILL+PLOWBRCHKILL(REP)
                    TKILL=DFKILL(REP)+MINEKILL(REP)+ROLLBRCHKILL(REP)+
211
          ¥
                                         PLOWBRCHKILL (REP)
             212
                 PLOWBRCHKILL(REP), ROLLBRCHKILL(REP), TKILL, CLOCK, RNGMIN
             213 338
214
                     MINEKILL(REP), MTYPE(1), MTYPE(2), MTYPE(3),
             PLOWBRCHKILL(REP), ROLLBRCHKILL(REP), TKILL, CLOCK, RNGMIN FORMAT(2X, 1314, 2X, F4.1, 2X, F5.3)
215 377
             WRITE(24,577) STATMIN1(1),STATMIN2(1),CODE0(1),
STATMIN1(2),STATMIN2(2),CODE0(2),
STATMIN1(3),STATMIN2(3),CODE0(3),
216
                             STATMIN1(4), STATMIN2(4), CODEO(4), CLOCK
             WRITE(23,577) STATMIN1(1), STATMIN2(1), CODEO(1),
217
                             STATMIN1(2), STATMIN2(2), CODEO(2),
                             STATMIN1(3), STATMIN2(3), CODEO(3),
                             STATMIN1(4), STATMIN2(4), CODEO(4), CLOCK
218 577
             FORMAT(2X,2I4,F5.1,2X,2I4,F5.1,2X,2I4,F5.1,2X,2I4,F5.1,2X,F5.1)
```

219 181 CONTINUE

| 220               |     |     | TTKILL=TDFKILL+TMINEKILL+TROLLBRCHKILL+TPLOWBRCHKILL                                    |
|-------------------|-----|-----|-----------------------------------------------------------------------------------------|
| 221<br>222<br>223 | 333 |     | WRITE(44,333) FORMAT('TOTAL NUMBER OF KILLS BY CATEGORY') WRITE(44,334)                 |
|                   | 334 | ×   | FORMAT('DIRECTFIRE ROLL PLOW MINE PLOWCARRIER', ROLLCARRIER TOTALKILLS')                |
| 225               |     | ×   | WRITE(44,335) TDFKILL,TROLLKILL,TPLOWKILL,TMINEKILL, TPLOWBRCHKILL,TROLLBRCHKILL,TTKILL |
| 226               | 335 |     | FORMAT(5X,13,4X,13,3X,13,3X,13,7X,13,11X,13,11X,13)                                     |
| 227               |     |     | etab                                                                                    |
| 227<br>228        | *** | ~~~ | STOP<br>END<br>END                                                                      |

```
************* MINESETUP ********************
                 SUBROUTINE MINESETUP (UNIT, NUNIT, DSEED, PMINE),
STATMIN1, MINDEPTH1, MAXDEPTH1, DEPMINE1, DENSMINE1,
DISTDET1, PMINE2, STATMIN2, MINDEPTH2, MAXDEPTH2,
229
                                       DEPMINE2, DENSMINE2, DISTDET2)
                ×
230
231
232
233
234
                   INTEGER
                            ER UNIT, NUNIT, STATMINI, STATMIN2, PACE
RNDMINE, PMINE1, MINDEPTH1, MAXDEPTH1, DEPMINE1, DENSMINE1
                   REAL
                             PMINE2, MINDEPTH2, MAXDEPTH2, DEPMINE2, DENSMINE2
                   REAL
                   REAL
                             DISTDET1, DISTDET2, WIDTH
                                DSEED
235
236
237
                   DIMENSION
                                     RNDMINE(100), PMINE1(10), STATMIN1(10), DISTDET1(10,100)
PMINE2(10), STATMIN2(10), DISTDET2(10,100)
                   DIMENSION
                                     DEPMINE1(10), DEPMINE2(10)
                   DIMENSION
       * EFFECTIVE WIDTH OF M1
                   WIDTH=3.5
           DO 31 UNIT=1, NUNIT

CALL GGUBS (DSEED, 90, RNDMINE)

DETERMINE STATUS OF MINEFIELD1

IF(RNDMINE(1) .LT. PMINE1(UNIT)) THEN

STATMIN1(UNIT)=1
239
240
241
       *DETERMINE DEPTH OF MINEFIELD1
243
                  DEPMINEL(UNIT) = (MINDEPTH1+((MAXDEPTH1-MINDEPTH1)
                                                                             *RNDMINE(2)))/1000
244
                                   END IF
      *SET UP ARRAY OF DISTANCES TO MINE ENCOUNTERS

IF (STATMIN1(UNIT) .EQ. 1) THEN

DO 32 PACE=1,88

DISTDET1(UNIT,PACE)=((LOG(1-RNDMINE(PACE+2)))
245
246
247
                                /((-WIDTH*DENSMINE1)))/1000

IF (DISTDET1(UNIT, PACE) .GT. DEPMINE1(UNIT)) THEN
DISTDET1(UNIT, PACE) = DEPMINE1(UNIT)/2
248
249
250
                                END IF
251
                         CONTINUE
                                   END IF
                       WRITE(54,967) UNIT,STATMINI(UNIT),DEPMINE1(UNIT),RNDMINE(2) FORMAT('UNIT',12,' STATUSMINE1 ',13,' DEPTH OF FIELD ',F5.3, 'RNDNUM ',F5.3)
       * REPEAT ABOVE PROCEDURES FOR MINEFIELD2
255
256
257
                                   CALL GGUBS (DSEED, 90, RNDMINE)
IF(RNDMINE(1) .LT. PMINE2(UNIT)) THEN
                                             STATMIN2(UNIT)=1
                  DEPMINE2(UNIT) = (MINDEPTH2+((MAXDEPTH2-MINDEPTH2)
                                                                       *RNDMINE(2)))/1000
259
                                   END IF
                IF (STATMIN2(UNIT) .EQ. 1) THEN
DO 21 PACE=1,88
DISTDET2(UNIT,PACE)=((LOG(1-RNDMINE(PACE+2)))
260
261
262
                               /((-WIDTH*DENSMINE2)))/1000

IF (DISTDET2(UNIT, PACE) .GT. DEPMINE2(UNIT)) THEN

DISTDET2(UNIT, PACE) = DEPMINE2(UNIT)/2
263
264
265
                                END IF
266 21
                         CONTINUE
                                   END IF
268
                       WRITE(54,977) UNIT,STATMIN2(UNIT),DEPMINE2(UNIT),RNDMINE(2) FORMAT('UNIT',12,' STATUSMINE2 ',13,' DEPTH OF FIELD ',F5.3, 'RNDNUM ',F5.3)
269 977
270 31
                         CONTINUE
                  RETURN
END
271
```

#### XXXXXXXXXXXXXXX UNITSTATUS XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

```
273
                   SUBROUTINE UNITSTATUS(BLUECODE, REDCODE, UNIT, NUNIT, POSITION,
                    NUMBLUE, BLUESTATUS, REDSTATUS, NUMRED, ELEMENT, VEHTYPE, CLOCK, REP,
                    RNGMIN)
274
                 INTEGER BLUECODE, REDCODE, UNIT, NUNIT, POSITION, NUMBLUE, EQUIP
                 INTEGER BLUESTATUS, REDSTATUS, NUMRED, ELEMENT, VEHTYPE, REP
REAL PRCNTEFFB, PRCNTEFFR, SURVIV, RSURVIV, CLOCK, RNGMIN
DIMENSION SURVIV(10), BLUESTATUS(10, 20), REDSTATUS(30)
275
276
277
                 DIMENSION BLUECODE(10), VEHTYPE(10,20), EQUIP(10,10), PRCNTEFFB(10)
278
      *D DETERMINE CURRENT STATUS OF RED AND BLUE FORCES
279
                           RSURVIV = 0
280
281
282
283
                   DO 42 UNIT=1, NUNIT
                           SURVIV(UNIT) = 0
                        D0 36 J=1,10
                               EQUIP(UNIT,J) = 0
284 36
                        CONTINUE
285
                       DO 44 POSITION = 1, NUMBLUE
                           IF (BLUESTATUS(UNIT, POSITION) .NE. 0) THEN
SURVIV(UNIT) = SURVIV(UNIT) + 1
IF (VEHTYPE(UNIT, POSITION) .EQ. 1) THEN
286
287
288
289
                 EQUIP(UNIT, VEHTYPE(UNIT, POSITION))
                               ×
290
291
                 EQUIP(UNIT, VEHTYPE(UNIT, POSITION))
                               = EQUIP(UNIT, VEHTYPE(UNIT, POSITION))+1
ELSE IF (VEHTYPE(UNIT, POSITION) .EQ. 3) THEN
             ¥
292
                 EQUIP(UNIT, VEHTYPE(UNIT, POSITION))
293
                               = EQUIP(UNIT, VEHTYPE(UNIT, POSITION))+1
ELSE IF (VEHTYPE(UNIT, POSITION) .EQ. 4) THEN
             ×
294
                 EQUIP(UNIT, VEHTYPE(UNIT, POSITION))
295
                 ## EQUIP(UNIT, VEHTYPE(UNIT, POSITION))+1

ELSE IF (VEHTYPE(UNIT, POSITION) .EQ. 5) THEN

EQUIP(UNIT, VEHTYPE(UNIT, POSITION))
             ×
296
297
             ×
                                               = EQUIP(UNIT, VEHTYPE(UNIT, POSITION))+1
298
                               END IF
299
                         END IF
300 44
                      CONTINUE
     * CHECK TO SET IF BLUE UNIT HAS REACHED DEFENSIVE POSTURE CRITERIA PRONTEFFB(UNIT) = SURVIV(UNIT)/NUMBLUE IF (PRONTEFFB(UNIT) .LT. .5) THEN BLUECODE(UNIT) = 0 END IF
301
302
303
304
305 42
                  CONTINUE
```

```
* TABULATION OF RED STRNGTH
DO 89 ELEMENT=1, NUMRED
306
                         IF(REDSTATUS(ELEMENT) .NE. RSURVIV + 1
307
                                                          .NE. 0) THEN
308
                         END IF
309
310 89
                   CONTINUE
                         PRCNTEFFR = RSURVIV/NUMRED IF (PRCNTEFFR .LT. .250) THEN
311
312
                                REDCODE = 0
313
314
                         END IF
     * WRITE OUTPUT TO DATA FILES
IF (CLOCK .LT. 1.0 .OR. PRCNTEFFR .LT. .250
.OR. RNGMIN .LT. .250) THEN
316
                       WRITE(54,987) UNIT, BLUECODE(UNIT), EQUIP(UNIT, 1),
EQUIP(UNIT, 2), EQUIP(UNIT, 4), EQUIP(UNIT, 3), EQUIP(UNIT, 5)
FORMAT('UNIT', 11,' UNITCODE', 11,' EQUIP TANK',
12,' MINEPLOW', 214,' MINEROLLER', 214)
317
318 987
319 19
                    CONTINUE
                IF (REP .EQ. 1 .AND. CLOCK .LT. 1.0) THEN DO 109 UNIT=1, NUNIT
320
321
                       WRITE(44,387) UNIT, BLUECODE(UNIT), EQUIP(UNIT, 1),
322
                          FORMAT('UNIT',1), EQUIP(UNIT,4), EQUIP(UNIT,5)

FORMAT('UNIT',11,' UNITCODE',11,' EQUIP TANK',

12,' MINEPLOW',214,' MINEROLLER',214)
323 387
324 109
                      CONTINUE
325
                 WRITE(44,336)
                  FORMAT('NUMBER OF KILLS BY CATEGORY PER REPITITION')
326 336
                 WRITE(44,337)
FORMAT(' DIRECTFIRE ROLL PLOW MINEFIELD PLOWCARR',
327
328 337
                                         ' ROLLCARR TOTKILL CLOCK MINRNG')
329
                 WRITE(24,537)
                 FORMAT(10X, 'ACTIVE MINEFIELDS AND TIMES TO DEFENSIVE POSTURE')
330 537
                 WRITE(24,538)
331
                 FORMAT(5X, 'AVENUE 1',5X,' AVENUE 2',5X,'
AVENUE 4',3X,'RUN TIME')
332 538
                                                                                 AVENUE 31,5X,
                 WRITE(24,539) FORMAT('
333
334 539
                                                                                 M1
                                                                                       M2',
                                    M1
                                          M2
                                                           Ml
                                                                M2
                                                             M1 M2')
             ¥
335
                END IF
                  WRITE(54,717) RSURVIV, REDCODE, PRCNTEFFR FORMAT( 'RED UNIT #SURVIV ',F3.0,' UNITCODE ',I2,' %EFF',F5.3)
336
337 717
338
                 END IF
339
                 RETURN
340
                   END
```

### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
SUBROUTINE LOCATION (LAG, UNIT, NUNIT, BLUEXPOS, BLUEYPOS, RNG, RNGMIN, REDX, REDY, AAA, CLOSE, BEHIND, BLUECODE)
341
                     INTEGER UNIT, NUNIT, CLOSE, BEHIND, BLUECODE REAL LAG, BLUEXPOS, BLUEYPOS, REDX, REDY, RNG, RNGMIN, RNGMAX, AAA DIMENSION BLUEXPOS(20), BLUEYPOS(20), RNG(20), BLUECODE(10)
342
343
344
                             LAG = 0.5
RNGMIN = 20.0
345
346
347
                             RNGMAX =
                                             0.1
348
                             CLOSE = 0
                             BEHIND = 0
349
      * CHECK TO DETERMINE IF UNITS ARE ALIGNED DO 57 UNIT=1, NUNIT
                     RNG(UNIT)=(SQRT(((REDX-BLUEXPOS(UNIT))**2)+
((REDY-BLUEYPOS(UNIT))**2))/10
351
                            IF (BLUECODE(UNIT) .EQ. 0) THEN
352
353
                                     GO TO 57
354
355
                            END IF
                              (RNG(UNIT) .LT. RNGMIN ) THEN RNGMIN = RNG(UNIT)
356
357
                                  CLOSE=UNIT
                           END IF
358
359
                          IF (RNG(UNIT) .GT. RNGMAX ) THEN
RNGMAX = RNG(UNIT)
360
                            END IF
361
362 57
                     CONTINUE
      * CALCULATE THE LAG FACTOR AAA
IF((RNGMAX - RNGMIN) .GT. LAG) THEN
AAA = (RNGMAX-RNGMIN)/LAG
363
364
365
                                    BEHIND = 1
366
                            END IF
                     RETURN
367
368
                     END
```

```
SUBROUTINE MOVI (LOC, TAIL, XNODE, YNODE, SPEED, TRAVEL, ANGLE, AVE, DIST, NODE, ISTART, DISTANCE, BLUEXPOS, BLUEYPOS, CLOCK, UNIT, BLUEXOFF1, BLUEYOFF1, BLUEXOFF2, BLUEYOFF2, ENTRY1,
369
              ×
              ×
                             BLUEX1POS, BLUEY1POS, UNITSPD, NUMBLUE, VEHTYPE, AAA
                             CLOSE, BEHIND, BLUECODE, BLUEXOFFO, BLUEYOFFO, DEPMINE1,
                             MINE1, STATMIN1, DSEED, BLUESTATUS, DISTDET1, REDX, REDY
              ×
                            BLUEDETECT1, RNG, BULL1, BYPASS1, ENTRY2, DEPMINE2, MINE2, STATMIN2, DISTDET2, BULL2, BYPASS2, MINEKILL, ROLLKILL, PLOWKILL, ROLLBRCHKILL, PLOWBRCHKILL, REP, MTYPE)
TAIL, NODE, LOC, ISTART, UNIT, CLOSE, BEHIND, ENTRY1, MINE1
NNODE, AVE, VEHTYPE, NUMBLUE, BLUECODE, STATMIN1, BLUESTATUS
              ×
370
                 INTEGER
371
                 INTEGER
372
373
                              ACTIVE1, ACTIVE2, CLEAR, PSN, BLUEDETECT1, BULL1, BYPASS1
ENTRY2, MINE2, STATMIN2, BULL2, BYPASS2, MINEKILL, ROLLKILL
TEMPTYPE, TEMPSTATUS, TEMPDETECT, PLOWKILL, PLOWBRCHKILL, REP
                 INTEGER
                 INTEGER
374
                 INTEGER
375
                INTEGER
                              ROLLBRCHKILL, MTYPE
376
                              DIST, SPEED, DISTANCE, BLUEXPOS, BLUEYPOS, MINEDET, REDX
                 REAL
                              BLUEXOFF1, BLUYOFF1, BLUEXOFF2, BLUEYOFF2, DISTDET1, REDY
377
                REAL
                              BLUEX1POS, BLUEY1POS, BLUEXOFFO, BLUEYOFFO, WIDTH, STEPMINE1
378
                REAL
379
                REAL
                              XNODE, YNODE, ANGLE, UNITSPD, AAA, DENSITY, MINERND, STEPMINE2
                              MINEPK, MOVE, DEPMINE1, RNG, DEPMINE2, DISTDET2, MINEDET2
380
                REAL
                              MINEDET1, PDETONAT4
381
                REAL
382
                REAL*8
                                 DSEED
                DIMENSION
383
                                 TAIL(150), NODE(150), LOC(10), BLUEDETECT1(10,20)
                                 DIST(100), AVE(10,30), SPEED(10,80), DISTDET1(10,100)
ANGLE(100), DISTANCE(10), ISTART(10), WIDTH(10), RNG(20)
384
                DIMENSION
                DIMENSION
385
                                 XNODE(150), YNODE(150), BLUEXPOS(20), BLUEYPOS(20)
BLUEXOFF1(20), BLUEYOFF1(20), BLUEXOFF2(20), ENTRY1(10)
BLUEYOFF2(20), BLUEX1POS(10,20), BLUEY1POS(10,20)
386
                DIMENSION
387
                DIMENSION
                DIMENSION
388
                                 UNITSPD(10), VEHTYPE(10,20), BLUECODE(10), MINE1(10)
389
                DIMENSION
                                 BLUEYOFFO(20), BLUEXOFFO(20), MINERND(100), STATMIN1(10)
BLUESTATUS(10,20), CLEAR(20), MOVE(20), DEPMINE1(10)
BULL1(10), BYPASS1(10), DISTDET2(10,100), ENTRY2(10)
390
                DIMENSION
391
                DIMENSION
392
                DIMENSION
                                 MINE2(10), STATMIN2(10), DEPMINE2(10), BYPASS2(10)
393
                DIMENSION
394
                DIMENSION
                                 BULL2(10), MINEKILL(100), ROLLKILL(100), PLONKILL(100)
395
                DIMENSION
                                 PLOWBRCHKILL(100), ROLLBRCHKILL(100), MTYPE(20)
396
                           MINEPK=.99
397
                           STEP=0.1
398
                           STEPMINE2=9.0
399
                           STEPMINE1=9.0
400
                           MINEDET1=0.1
401
                           MINEDET2=0.5
402
                           PCLEAR4=.861
403
                           PCLEAR5=.926
                           PDETONAT4=.10
404
405
                           PSURVIV4=.90
406
                           PSURVIV5=.75
                           PDETTNK4=.999
407
408
                           PDETTNK5=.978
      ×
                  PRINT*, 'BLUECODE', UNIT, BLUECODE(UNIT), LOC(UNIT)
409
                                 CALL GGUBS(DSEED, 100, MINERND)
410
                DO 70 KOUNT=1,5
411
                      LOC(UNIT) = AVE(UNIT, ISTART(UNIT))
412
                               IF (BLUECODE(UNIT) .EQ. 0) THEN
413
                                          TRAVEL = 0
                                          UNITSPD(UNIT) = 0
414
415
                                          GO TO 75
                               END IF
416
                      CALL SPD(TRAVEL, SPEED, LOC, STEP, UNIT, UNITSPD, VEHTYPE, NUMBLUE,
417
                                     AAA, CLOSE, BEHIND, BLUESTATUS)
```

```
IF (ENTRY)(UNIT) .EQ. 0) THEN
IF (LOC(UNIT) .EQ. MINE)(UNIT) .AND. STATMIN)(UNIT) .EQ. 1) THEN
IF (MINERND(1) .LT. MINEDET1) THEN
418
419
420
421
422
423
424
425
                                    DO 33 K=1, NUMBLUE
                                          IF (BLUESTATUS (UNIT, K) . EQ. 2) THEN
                                                BLUESTATUS(UNIT,K) = 1
                                          END IF
                                          IF (VEHTYPE(UNIT, K) .EQ. 2 ) THEN
VEHTYPE(UNIT, K) = 4
ELSE IF (VEHTYPE(UNIT, K) .EQ. 3 ) THEN
426
427
428
                                                  VEHTYPE(UNIT,K) = 5
                                          END IF
429
430 33
                                    CONTINUE
431
432
                                          BLUECODE(UNIT)=2
                                          CLEAR(UNIT)=3
433
                     MOVE(UNIT)=0.001
434
                                          ENTRY1(UNIT)=1
                  767
436
             ¥
                        GO TO 98
ELSE IF (DISTDET1(UNIT,1) .LT. DISTANCE(UNIT)) THEN
437
438
                  DO 52 I=1, NUMBLUE
439
                   IF (BLUESTATUS(UNIT, I) .NE. 0) THEN
RANGE1=(SQRT(((REDX-BLUEX1POS(UNIT, I))**2)+
440
441
                              ((REDY-BLUEY1POS(UNIT, I))**2)))/10
                              IF (RANGEL .LT. STEPMINEL) THEN STEPMINEL=RANGEL
442
443
444
                                       ACTIVE1=I
                              ELSE IF (RANGEL .LT. STEPMINE2) THEN STEPMINE2=RANGEL
445
446
447
                                       ACTIVE2=I
448
                              END IF
449
                         END IF
450 52
               CONTINUE
451
                                          BLUECODE(UNIT) = 2
                 WRITE(54,757) CLOCK, UNIT, LOC(UNIT), BLUECODE(UNIT) FORMAT(2X,F4.1,' UNIT ',I1,' DETONATED MINE1 AT ',I3, ' BLUECODE IS ',I1)
452
453 757
             ×
454
                              IF (MINERND(2)
                                                     .LT. MINEPK) THEN
                                     BLUESTATUS(UNIT, ACTIVE1)=0
MINEKILL(REP)=MINEKILL(REP)+1
455
456
                  MTYPE(VEHTYPE(UNIT, ACTIVE1))=MTYPE(VEHTYPE(UNIT, ACTIVE1))+1
WRITE(54,913) UNIT, ACTIVE1, VEHTYPE(UNIT, ACTIVE1)

IF (DISTDET1(UNIT, 2) . LT. DISTANCE(UNIT) . AND.

MINERND(3) . LT. MINEPK) THEN

BLUESTATUS(UNIT, ACTIVE2) = 0
457
458
459
460
                   MINEKILL(REP)=MINEKILL(REP)+1
MTYPE(VEHTYPE(UNIT,ACTIVE2))=MTYPE(VEHTYPE(UNIT,ACTIVE2))+1
461
462
463
                   WRITE(54,913) UNIT, ACTIVE2, VEHTYPE(UNIT, ACTIVE2)
464
                          END IF
465
                                    DO 35 K=1, NUMBLUE
                                          IF (BLUESTATUS (UNIT, K) . EQ. 2) THEN
466
```

```
467
                                          BLUESTATUS(UNIT,K) = 1
468
                                     END IF
                                     IF (VEHTYPE(UNIT,K) .EQ. 2 ) THEN
VEHTYPE(UNIT,K) = 4
ELSE IF (VEHTYPE(UNIT,K) .EQ. 3 ) THEN
469
470
471
                                            VEHTYPE(UNIT,K) = 5
472
473
                                     END IF
                                CONTINUE
474 35
475
                                      CLEAR(UNIT)=3
                                     ENTRY1(UNIT)=1
476
                  MOVE(UNIT) = DISTDET1(UNIT, CLEAR(UNIT)) + DISTDET1(UNIT, 1)
477
                 FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' KILLED AT MINEFIELD 1', " MMMMMMMMMMMMMMMMMMMM")
478 913
479
                                     GO TO 98
                          END IF
480
481
                                DO 59 K=1, NUMBLUE
                                     IF (BLUESTATUS (UNIT, K) .EQ. 2) THEN
BLUESTATUS (UNIT, K) = 1
482
483
484
                                     END IF
                                     IF (VEHTYPE(UNIT,K) .EQ. 2 ) THEN
VEHTYPE(UNIT,K) = 4
ELSE IF (VEHTYPE(UNIT,K) .EQ. 3 ) THEN
485
486
487
                                           VEHTYPE(UNIT,K) = 5
488
                                     END IF
489
                                CONTINUE
490 59
491
                                      CLEAR(UNIT)=3
                                     ENTRY1(UNIT)=1
492
                  MOVE(UNIT) = DISTDET1(UNIT, CLEAR(UNIT)) + DISTDET1(UNIT, 1)
493
494
                                      GO TO 98
                    END IF
495
496
                END IF
             ELSE IF (ENTRY2(UNIT) .EQ. 0) THEN
IF (LOC(UNIT) .EQ. MINE2(UNIT) .AND. STATMIN2(UNIT) .EQ. 1) THEN
IF (MINERND(1) .LT. MINEDET2) THEN
DO 99 K=1,NUMBLUE
497
498
499
500
                                     IF (BLUESTATUS (UNIT, K) . EQ. 2) THEN
501
                                          BLUESTATUS (UNIT, K) = 1
502
                                     END IF
503
                                     IF (VEHTYPE(UNIT, K) .EQ. 2 ) THEN VEHTYPE(UNIT, K) = 4
ELSE IF (VEHTYPE(UNIT, K) .EQ. 3 ) THEN
504
505
506
507
                                            VEHTYPE(UNIT,K) = 5
508
                                     END IF
                                CONTINUE
509 99
                                     BLUECODE(UNIT)=2
510
511
                                     CLEAR(UNIT)=3
                  MOVE(UNIT)=0.001
512
513
                                     ENTRY2(UNIT)=1
               515 766
           ×
                                     GO TO 98
516
517
                     ELSE IF (DISTDET2(UNIT, 1) .LT. DISTANCE(UNIT)) THEN
518
                DO 96 I=1, NUMBLUE
```

```
IF (BLUESTATUS(UNIT, I) .NE. 0) THEN
519
                  RANGE1=(SQRT(((REDX-BLUEX1POS(UNIT,I))**2)+
((REDY-BLUEY1POS(UNIT,I))**2))/10
IF (RANGE1 .LT. STEPMINE1) THEN
520
521
522
                                     STEPMINE1=RANGE1
523
524
525
                                     ACTIVE1=I
                            ELSE IF (RANGEL .LT. STEPMINE2) THEN
                                     STEPMINE2=RANGE1
                                     ACTIVE2=I
526
527
                            END IF
528
                        END IF
     96
              CONTINUE
529
530
                                        BLUECODE(UNIT) = 2
                WRITE(54,756) CLOCK, UNIT, LOC(UNIT), BLUECODE(UNIT) FORMAT(2X,F4.1, UNIT ',II,' DETONATED MINE2 AT ',I3, BLUECODE IS ',I1)
             ×
                  PRINT*, 'UNIT ACTIVE MINE2', UNIT, ACTIVE IF (MINERND(2) .LT. MINEPK) THEN BLUESTATUS(UNIT, ACTIVE) = 0
533
534
535
                                   MINEKILL(REP)=MINEKILL(REP)+1
                  MTYPE(VEHTYPE(UNIT, ACTIVE1))=MTYPE(VEHTYPE(UNIT, ACTIVE1))+1
WRITE(54,943) UNIT, ACTIVE1, VEHTYPE(UNIT, ACTIVE1)
IF (DISTDET2(UNIT, 2) .LT. DISTANCE(UNIT) .AND.
536
537
538
                                      MINERND(3) .LT. MINEPK) THEN
BLUESTATUS(UNIT, ACTIVE2) = 0
             ¥
539
540
                                   MINEKILL(REP)=MINEKILL(REP)+1
541
                  MTYPE(VEHTYPE(UNIT, ACTIVE2))=MTYPE(VEHTYPE(UNIT, ACTIVE2))+1
                  WRITE(54,943) UNIT, ACTIVE2, VEHTYPE(UNIT, ACTIVE2)
542
543
                         END IF
544
                                  DO 95 K=1, NUMBLUE
                                       IF (BLUESTATUS(UNIT,K) .EQ. 2) THEN
BLUESTATUS(UNIT,K) = 1
545
546
547
                                       END IF
                                           (VEHTYPE(UNIT,K) .EQ. 2 ) THEN VEHTYPE(UNIT,K) = 4
548
549
                                       ELSE IF (VEHTYPE(UNIT, K) .EQ. 3 ) THEN VEHTYPE(UNIT, K) = 5
550
551
                                       END IF
552
553 95
                                  CONTINUE
                                         CLEAR(UNIT)=3
554
                   ENTRY2(UNIT)=1
MOVE(UNIT)=DISTDET2(UNIT,CLEAR(UNIT))+DISTDET2(UNIT,1)
555
556
                  557 943
558
                                       GO TO 98
559
                            END IF
                                  DO 94 K=1, NUMBLUE
560
                                       IF (BLUESTATUS (UNIT, K) . EQ. 2) THEN
561
562
                                             BLUESTATUS(UNIT, K) = 1
                                       END IF
IF (VEHTYPE(UNIT,K) .EQ. 2 ) THEN
VEHTYPE(UNIT,K) = 4
ELSE IF (VEHTYPE(UNIT,K) .EQ. 3 ) THEN
563
564
565
566
                                              VEHTYPE(UNIT,K) = 5
567
```

```
END IF
568
569 94
                               CONTINUE
                                     CLEAR(UNIT)=3
570
571
                                    ENTRY2(UNIT)=1
572
                  MOVE(UNIT)=DISTDET2(UNIT, CLEAR(UNIT))+DISTDET2(UNIT, 1)
573
                                     GO TO 98
574
                   END IF
               END IF
575
576
             END IF
              IF (ENTRY)(UNIT) .EQ. 2) THEN
IF (LOC(UNIT) .EQ. MINE)(UNIT)) THEN
577
578
                                   IF (BULLI(UNIT) .EQ. 1) THEN
579
                                               GO TO 41
580
                                   ELSE IF (BYPASSI(UNIT) .EQ. 1) THEN
581
582
                                               GO TO 46
                                   END IF
583
                    IF (BULL1(UNIT) .EQ. 0 ..
DO 26 IIPSN=1, NUMBLUE
584
                                                  .AND. BYPASSI(UNIT) .EQ. 0) THEN
585
                            IF (BLUESTATUS(UNIT, IIPSN) .EQ. 0) THEN
586
                            GO TO 26
ELSE IF (VEHTYPE(UNIT, IIPSN)
587
                                                                  .EQ. 1) THEN
588
                                IF (DISTANCE(UNIT) .GE. DEPMINEL(UNIT)/2) THEN
BULL1(UNIT) = 1
589
590
                                                     GO TO 46
591
                                ELSE IF (DISTANCE(UNIT)
                                                                .LT. DEPMINEL(UNIT)/2) THEN
592
                                                     BYPASSI(UNIT) = 1
593
594
                                                     GO TO 41
595
                                END IF
                            ELSE IF (VEHTYPE(UNIT, IIPSN) .NE. 1) THEN GO TO 25
596
597
                            END IF
598
                        CONTINUE
599
     26
                    END IF
600
                           VE(UNIT) .LT. DISTANCE(UNIT)) THEN
DO 37 IPSN = 1,NUMBLUE
601 25
                   IF (MOVE(UNIT)
                                 IF (BLUESTATUS(UNIT, IPSN) .EQ. 0) THEN GO TO 37 END IF
602
603
604
605
                                   TYPE(UNIT, IPSN) .EQ. 1) THEN IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
                         IF (VEHTYPE(UNIT, IPSN) .EQ.
606
607
                                BLUESTATUS(UNIT, IPSN) = 0
MINEKILL(REP)=MINEKILL(REP)+1
608
609
              610
611
612 940
                                   GO TO 36
613
                                   ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
614
                                  GO TO 36
END IF
615
616
                         ELSE IF (VEHTYPE(UNIT, IPSN) .EQ. 4) THEN
IF (MINERND(CLEAR(UNIT)) .LT. PCLEAR4) THEN
CLEAR(UNIT) = CLEAR(UNIT) + 1
617
618
619
              IF (MINERHO(CLEAR(UNIT)) .GE. PDETONAT4) THEN WRITE(54,641) UNIT, IPSN, VEHTYPE(UNIT, IPSN) FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED A MINE',
620
621
622 641
                              IN MINEFIELD 1 SSSS')
```

```
623
624
625
626
627
628
                                       CLEAR(UNIT) = CLEAR(UNIT) + 1
                                 GO TO 36
ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETONAT4) THEN
                                      CLEAR(UNIT) = CLEAR(UNIT) + 1
IF (MINERND(CLEAR(UNIT)) .L
                                                                           .LT. PSURVIV4) THEN
               WRITE(54,941) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED/SURVIVED BLAST',
' IN MINEFIELD 1 SSSS')
629 941
                                     GO TO 36
ELSE IF (MINERND(CLEAR(UNIT)) .GE. PSURVIV4) THEN
630
631
632
               633 942
634
635
                                           PLOWKILL(REP)=PLOWKILL(REP)+1
                                           VEHTYPE(UNIT, IPSN) = 1
                                           TEMPTYPE=VEHTYPE(UNIT, IPSN)
636
637
638
                                           TEMPSTATUS=BLUESTATUS(UNIT, IPSN)
                                           TEMPDETECT=BLUEDETECT1(UNIT, IPSN)
639
                                                    DO 61 PSN=IPSN, NUMBLUE-1
                                                   VEHTYPE(UNIT, PSN) = VEHTYPE(UNIT, PSN+1)
640
641
                                            BLUESTATUS(UNIT, PSN) = BLUESTATUS(UNIT, PSN+1)
642
                                            BLUEDETECT1(UNIT, PSN) = BLUEDETECT1(UNIT, PSN+1)
643 61
                                                   CONTINUE
644
                                           BLUESTATUS (UNIT, NUMBLUE) = TEMPSTATUS
645
                                           VEHTYPE(UNIT, NUMBLUE) = TEMPTYPE
646
                                           BLUEDETECTI (UNIT, NUMBLUE) = TEMPDETECT
647
                                          GQ TQ 36
648
                                     END IF
649
                                END IF
                      ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETTNK4 .AND.
MINERND(CLEAR(UNIT)) .GT. PCLEAR4) T
CLEAR(UNIT)=CLEAR(UNIT)+1
650
651
652
653
               IF (MINERND(CLEAR(UNIT)) LT. MINEPK) THEN WRITE(54,945) UNIT, IPSN, VEHTYPE(UNIT, IPSN) FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' PLOW FAILED TO CLEAR ',
654 945
                               'MINE/CARRIER WAS KILLED')
BLUESTATUS(UNIT, IPSN) = 0
655
656
657
                                 PLOWBRCHKILL(REP)=PLOWBRCHKILL(REP)+1
                                GO TO 36
ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
658
                                GO TO 36
659
660
                                END IF
                                             CCLEAR(UNIT)) .GE. PDETTNK4) THEN CLEAR(UNIT)=CLEAR(UNIT)+1
                       ELSE IF (MINERND(CLEAR(UNIT))
661
662
               WRITE(54,946) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' PLOW FAILED TO CLEAR ',
663
664 946
                               'MINE/CARRIER SURVIVED')
665
               WRITE(54,947)
     947
               FORMAT('MINE LEFT IN PATH UNEXPLODED')
666
667
                                           GO TO 37
668
                   ELSE IF (VEHTYPE(UNIT, IPSN) .EQ. 5) THEN
IF (MINERND(CLEAR(UNIT)) .LT. PCLEAR5) THEN
CLEAR(UNIT) = CLEAR(UNIT) + 1
IF (MINERND(CLEAR(UNIT)) .LT. PSURVIV5) THEN
TECES 0013 UNIT TESN VEHTYPE(UNIT TESN)
669
670
671
672
               WRITE(54,901) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED/SURVIVED A MINE',
673
    901
674
                                 IN MINEFIELD 1 SSSS')
675
                                      GO TO 36
                         ELSE IF (MINERND(CLEAR(UNIT)) .GE. PSURVIV5) THEN
676
```

```
677
678 944
679
680
681
682
                                     TEMPSTATUS=BLUESTATUS(UNIT, IPSN)
                                     TEMPDETECT=BLUEDETECT1(UNIT, IPSN)
683
                  DO 65 PSN=IPSN, NUMBLUE-1
684
                          VEHTYPE(UNIT, PSN) = VEHTYPE(UNIT, PSN+1)
BLUESTATUS(UNIT, PSN+1)
685
686
687
                          BLUEDETECTI(UNIT, PSN) = BLUEDETECT1(UNIT, PSN+1)
688
                                CONTINUE
                          BLUESTATUS(UNIT, NUMBLUE) = TEMPSTATUS
VEHTYPE(UNIT, NUMBLUE) = TEMPTYPE
BLUEDETECT1(UNIT, NUMBLUE) = TEMPDETECT
689
690
691
692
                                    GO TO 36
                         END IF
693
                      ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETTNK5 .AMMINERND(CLEAR(UNIT)) .GT. PCLEAR5)
694
695
                                            CLEAR(UNIT)=CLEAR(UNIT)+1
                           IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
BLUESTATUS(UNIT, IPSN) = 0
696
697
                           955) UNIT, IPSN, VEHTYPE (UNIT, IPSN)
VEHICLE ',213,' VEHTYPE ',13,' ROLLER FAILED TO CLEAR ',
               WRITE(54,955)
698
699
     955
               FORMAT(
                              'MINE/CARRIER WAS KILLED')
                             ROLLBRCHKILL(REP)=ROLLBRCHKILL(REP)+1
GO TO 36
700
701
                             ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
702
703
                                             GO TO 36
704
                             END IF
                      ELSE IF (MINERND(CLEAR(UNIT)) .GE. PDETTNK5) THEN CLEAR(UNIT)=CLEAR(UNIT)+1
705
706
              WRITE(54,948) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' ROLLER FAILED TO CLEAR ',
'MINE/CARRIER SURVIVED')
707
708 948
709
               WRITE(54,949)
               FORMAT('MINE LEFT IN PATH UNEXPLODED')
710 949
711
                                          GO TO 37
712
                      END IF
713
                      END IF
714
     37
                CONTINUE
                      CLEAR(UNIT)=CLEAR(UNIT)+1

MOVE(UNIT)=DISTDET1(UNIT,CLEAR(UNIT))+MOVE(UNIT)

IF (DISTANCE(UNIT) .GT. DEPMINE1(UNIT)) THEN
715 36
716
717
718
                                                    ENTRY1(UNIT)=3
                                      ODE(UNIT) .NE. 0) THEN
BLUECODE(UNIT) = 1
719
                        IF (BLUECODE(UNIT)
720
721
                                    DO 38 K=1, NUMBLUE
                           IF (VEHTYPE(UNIT, K) .EQ. 4 ) THEN VEHTYPE(UNIT, K) = 2
ELSE IF (VEHTYPE(UNIT, K) .EQ. 5)
722
723
724
725
                                             VEHTYPE(UNIT,K) = 3
726
727
                           END IF
                  CONTINUE
728
729
                        END IF
                      END IF
730
                   END IF
731
             END IF
732
```

```
IF (BULL1(UNIT).EQ. 1) THEN
TRAVEL=TRAVEL/10
733 41
734
735
                               IF(MOVE(UNIT) .LT. DISTANCE(UNIT)) THEN
DO 21 IPSN = 1, NUMBLUE
IF (BLUESTATUS(UNIT, IPSN) .EQ. 0) THEN
736
737
738
739
                                                  GO TO 21
                                             END IF
                     END IF

IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN

BLUESTATUS(UNIT, IPSN) = 0

MINEKILL(REP)=MINEKILL(REP)+1

MTYPE(VEHTYPE(UNIT, IPSN))=MTYPE(VEHTYPE(UNIT, IPSN))+1

WRITE(54,967) UNIT, IPSN, VEHTYPE(UNIT, IPSN)

FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' KILLED IN MINEFIELD 1 ',

"DUE TO BULLING THRU ')

GO TO 71

ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN

GO TO 71
740
741
742
743
744
745 967
                  ×
746
747
748
                                               GO TO 71
END IF
749
750 21
                                     CONTINUE
                                                              CLEAR(UNIT)=CLEAR(UNIT)+1
751
                               MOVE(UNIT) = DISTDET1(UNIT, CLEAR(UNIT)) + MOVE(UNIT)

IF (DISTANCE(UNIT) .GT. DEPMINE1(UNIT)) THEN

ENTRY1(UNIT) = 3
752
753
754
                                   IF (BLUECODE(UNIT) .NE. 0) THEN
BLUECODE(UNIT) = 1
755
756
757
                                                     BULL1(UNIT) = 2
758
                                                    GO TO 75
759
                                 END IF
                               END IF
760
761
                         END IF
                                 END IF
762
                    IF (BYPASS1(UNIT).EQ. 1) THEN

TRAVEL=TRAVEL/40

IF (KOUNT .EQ.5) THEN

WRITE(54,968) UNIT
FORMAT(' UNIT ',13,' IS CONDUCTING BYPASS OPERATION AROUND ',

"MINEFIELD 1 PPPPPPP')
763 46
764
765
766
       968
767
                 ¥
768
                                     END IF
769
                               IF (DISTANCE(UNIT) .GT. DEPMINEL(UNIT)) THEN
770
                                                                         ENTRY1(UNIT)=3
771
                                   IF (BLUECODE(UNIT)
                                                                        .NE. 0) THEN
                                                      BLUECODE(UNIT) = 1
772
                                                    BYPASSI(UNIT) = 2
773
774
                         END IF
775
                         END IF
                               END IF
776
                    IF (ENTRY2(UNIT) .EQ. 2) THEN
IF (LOC(UNIT) .EQ. MINE2(UNIT)) THEN
IF (BULL2(UNIT) .EQ. 1) THEN
GO TO 93
ELSE IF (BYPASS2(UNIT) .EQ. 1) THEN
GO TO 92
777
778
779
780
781
782
783
                                                    END IF
                              IF (BULL2(UNIT) .EQ. 0 .AND. BYPASS2(UNIT) .EQ. 0) THEN DO 91 IIPSN=1,NUMBLUE IF (BLUESTATUS(UNIT, IIPSN) .EQ. 0) THEN
784
785
786
787
                                                                                 GO TO 91
```

```
ELSE IF (VEHTYPE(UNIT, IIPSN) .EQ. 1) THEN
788
                                        IF (DISTANCE (UNIT) '.GE. DEPMINE 2 (UNIT) / 2) THEN BULL 2 (UNIT) = 1
789
790
791
                                                                 GO TO 92
792
793
                                        ELSE IF (DISTANCE(UNIT) .LT. DEPMINE2(UNIT)/2) THEN
BYPASS2(UNIT) = 1
                                                                  GO TO 93
794
                                   END IF ELSE IF (VEHTYPE(UNIT, IIPSN) .NE. 1) THEN
795
796
797
                                                                 GO TO 72
                              END IF
798
799 91
800
                          END IF
                        IF (MOVE(UNIT) .LT. DISTANCE(UNIT)) THEN DO 73 IPSN = 1, NUMBLUE
801 72
                                         IF (BLUESTATUS(UNIT, IPSN) .EQ. 0) THEN GO TO 73 END IF
802
803
804
805
                                IF (VEHTYPE(UNIT, IPSN) .EQ. 1) THEN
IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
806
807
                                           BLUESTATUS(UNIT, IPSN) = 0
808
                                   MINEKILL(REP)=MINEKILL(REP)+1
MTYPE(VEHTYPE(UNIT, IPSN))=MTYPE(VEHTYPE(UNIT, IPSN))+1
809
810
                 WRITE(54,741) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' KILLED IN MINEFIELD 2 ',
'DUE TO UNCLEARED MINE')
GO TO 78
811
812 741
813
814
                                           ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
815
                                           GO TO 78
816
                                           END IF
                                ELSE IF (VEHTYPE(UNIT, IPSN) .EQ. 4) THEN
IF (MINERND(CLEAR(UNIT)) .LT. PCLEAR4) THEN
CLEAR(UNIT) = CLEAR(UNIT) + 1
817
818
                 IF (MINERND(CLEAR(UNIT) + 1

IF (MINERND(CLEAR(UNIT)) .GE. PDETONAT4) THEN

WRITE(54,341) UNIT, IPSN, VEHTYPE(UNIT, IPSN)

FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED A MINE',

' IN MINEFIELD 2 SSSS')

CLEAR(UNIT) - CLEAR(UNIT)
819
820
821
822 341
823
824
825
826
827
                                           CLEAR(UNIT) = CLEAR(UNIT) + 1
                                                GO TO 78
                                      ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETONAT4) THEN
                                           CLEAR(UNIT) = CLEAR(UNIT) + 1
                                             IF (MINERAD(CLEAR(UNIT)) .LT. PSURVIV4) THEN
                 WRITE(54,981) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED/SURVIVED BLAST',
' IN MINEFIELD 2 SSSS')
828
829
      981
                 GO TO 78

ELSE IF (MINERND(CLEAR(UNIT)) .GE. PSURVIV4) THEN WRITE(54,982) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED/PLOW DID NOT ',
' SURVIVE IN MINEFIELD 2')
830
831
832
833 982
                                              PLONKILL(REP)=PLOWKILL(REP)+1
834
                                                VEHTYPE(UNIT, IPSN) = 1
TEMPTYPE=VEHTYPE(UNIT, IPSN)
835
836
                                                TEMPSTATUS=BLUESTATUS(UNIT, IPSN)
837
                                                TEMPDETECT=BLUEDETECT1(UNIT, IPSN)
838
                                                           DO 53 PSN=IPSN, NUMBLUE-1
839
                                                 VEHTYPE(UNIT, PSN) = VEHTYPE(UNIT, PSN+1)
BLUESTATUS(UNIT, PSN+1)
840
841
842
                                                 BLUEDETECT1(UNIT, PSN) = BLUEDETECT1(UNIT, PSN+1)
```

```
CONTINUE
843 53
                                                 BLUESTATUS(UNIT, NUMBLUE) = TEMPSTATUS
844
                                                  VEHTYPE(UNIT, NUMBLUE) = TEMPTYPE
845
                                                  BLUEDETECT1(UNIT, NUMBLUE) = TEMPDETECT
846
847
                                                  GO TO 78
848
                                           END IF
                                  END IF
849
                          ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETTNK4 .AND
MINERND(CLEAR(UNIT)) .GT. PCLEAR()
CLEAR(UNIT)=CLEAR(UNIT)+1
850
851
                  IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
WRITE(54,975) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' PLOW FAILED TO CLEAR ',
'MINE/CARRIER WAS KILLED')
BLUESTATUS(UNIT, IPSN) = 0
852
853
     975
854
855
                                      PLOWBRCHKILL(REP)=PLOWBRCHKILL(REP)+1
856
                                      GO TO 78
ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
857
858
859
                                      GO TO 78
                                      END IF
860
                          ELSE IF (MINERND(CLEAR(UNIT))
                                                                            .GE. PDETTNK4) THEN
861
                                                    CLEAR(UNIT)=CLEAR(UNIT)+1
862
                 WRITE(54,976) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' PLOW FAILED TO CLEAR ',
'MINE/CARRIER SURVIVED')
863
864
      976
865
                  WRITE(54,937)
                  FORMAT ('MINE LEFT IN PATH UNEXPLODED')
866
     937
                                                   GO TO 73
867
                       END IF
ELSE IF (VEHTYPE(UNIT, IPSN) .EQ. 5) THEN
IF (MINERND(CLEAR(UNIT)) .LT. PCLEAR5) THEN
CLEAR(UNIT) = CLEAR(UNIT) + 1
PSURVIV5) TI
868
869
87Ó
                 871
872
873
     933
874
875
                 ELSE IF (MINERND(CLEAR(UNIT)) .GE. PSURVIV5) THEN
WRITE(54,934) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' CLEARED/ROLLER DIDNOT',
' SURVIVE IN MINEFIELD 2')
ROLLKILL(REP)=ROLLKILL(REP)+1
876
877
878 934
879
                                            VEHTYPE(UNIT, IPSN) = 1
TEMPTYPE=VEHTYPE(UNIT, IPSN)
TEMPSTATUS=BLUESTATUS(UNIT, IPSN)
880
881
882
                                            TEMPDETECT=BLUEDETECT1(UNIT, IPSN)
883
                     DO 45 PSN=IPSN, NUMBLUE-1
884
                               VEHTYPE(UNIT, PSN)=VEHTYPE(UNIT, PSN+1)
BLUESTATUS(UNIT, PSN)= BLUESTATUS(UNIT, PSN+1)
BLUEDETECTI(UNIT, PSN)=BLUEDETECTI(UNIT, PSN+1)
885
886
837
888 45
                                      CONTINUE
889
                               BLUESTATUS(UNIT, NUMBLUE) = TEMPSTATUS
                               VEHTYPE(UNIT, NUMBLUE) = TEMPTYPE
BLUEDETECTI(UNIT, NUMBLUE) = TEMPDETECT
GO TO 78
890
891
892
893
                             END IF
                          ELSE IF (MINERND(CLEAR(UNIT)) .LT. PDETTNK5 .AN MINERND(CLEAR(UNIT)) .GT. PCLEAR5)

CLEAR(UNIT)=CLEAR(UNIT)+1
894
                                                                                                   .AND.
895
                                 IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
896
```

```
BLUESTATUS(UNIT, IPSN) = 0
WRITE(54,935) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' ROLLER FAILED TO CLEAR ',
897
898
      935
899
                                 'MINE/CARRIER WAS KILLED')
ROLLBRCHKILL(REP)=ROLLBRCHKILL(REP)+1
900
901
                                 GO TO 78
ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
902
903
                                                   GO TO 78
904
                                 END IF
                         ELSE IF (MINERND(CLEAR(UNIT)) .GE. PDETTNK5) THEN
905
                                                 CLEAR(UNIT)=CLEAR(UNIT)+1
906
                 WRITE(54,938) UNIT, IPSN, VEHTYPE(UNIT, IPSN)
FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' ROLLER FAILED TO CLEAR ',
907
908 938
                                  'MINE/CARRIER SURVIVED')
909
                 WRITE(54,939)
910 939
                 FORMAT('MINE LEFT IN PATH UNEXPLODED')
911
                                                GO TO 73
912
                         END IF
913
914
                  CONTINUE
915
                                                  CLEAR(UNIT)=CLEAR(UNIT)+1
                         MOVE(UNIT) = DISTDET2(UNIT, CLEAR(UNIT)) + MOVE(UNIT)

IF (DISTANCE(UNIT) .GT. DEPMINE2(UNIT)) THEN
916
917
918
                                                           ENTRY2(UNIT)=3
                                           DECUNIT) .NE. 0) THEN BLUECODE(UNIT) = 1
919
                            IF (BLUECODE(UNIT)
920
921
                                        DO 48 K=1, NUMBLUE
                               IF (VEHTYPE(UNIT,K) .EQ. 4 ) THEN
VEHTYPE(UNIT,K) = 2
ELSE IF (VEHTYPE(UNIT,K) .EQ. 5 ) THEN
922
923
924
925
                                                   VEHTYPE(UNIT,K) = 3
926
                               END IF
927
                    CONTINUE
      48
                           END IF
928
                         END IF
929
930
                     END IF
               END IF
END IF
IF (BULL2(UNIT).EQ. 1) THEN
931
932
933
      93
                        TRAVEL=TRAVEL/10

IF(MOVE(UNIT) .LT. DISTANCE(UNIT)) THEN
DO 82 IPSN = 1, NUMBLUE
934
935
936
937
                                    IF (BLUESTATUS (UNIT, IPSN) . EQ. 0) THEN
938
                                   GO TO 82
END IF
                                   IF (MINERND(CLEAR(UNIT)) .LT. MINEPK) THEN
BLUESTATUS(UNIT, IPSN) = 0
MINEKILL(REP)=MINEKILL(REP)+1
940
941
942
                MINERILL(REF)=MINERILL(REF)+H

MTYPE(VEHTYPE(UNIT, IPSN))=MTYPE(VEHTYPE(UNIT, IPSN))+1

WRITE(54,957) UNIT, IPSN, VEHTYPE(UNIT, IPSN)

FORMAT(' VEHICLE ',213,' VEHTYPE ',13,' KILLED IN MINEFIELD 2 ',

'DUE TO BULLING THRU ')

GO TO 84

ELSE IF (MINERND(CLEAR(UNIT)) .GE. MINEPK) THEN
943
944
945 957
946
947
948
                                         30 TO 84
                                     END IF
949
                             CUNTINUE
950 82
951
                                                 CLEAR(UNIT)=CLEAR(UNIT)+1
      84
                                          ! VE(UNIT) = DISTDET2(UNIT, CLEAR(UNIT)) + MOVE(UNIT)
952
953
                        IF (DISTANCE(UNIT) .GT. DEPMINE2(UNIT)) THEN
```

```
954
                                                   ENTRY2(UNIT)=3
                                    CODE(UNIT) .NE. 0) THEN
BLUECODE(UNIT) = 1
BULL2(UNIT) = 2
                        IF (BLUECODE(UNIT)
955
956
957
958
                                    GO TO 75
959
                       END IF
960
                     END IF
961
                 END IF
962
                       END IF
                 IF (BYPASS2(UNIT).EQ. 1) THEN TRAVEL=TRAVEL/50
963 92
964
965
              IF (KOUNT .EQ.5) THEN
WRITE(54,977) UNIT
FORMAT(' UNIT ',13,' IS CONDUCTING BYPASS OPERATION AROUND ',
"MINEFIELD 2 PPPPPPP')
966
967 977
968
                         END IF
969
970
                     IF (DISTANCE(UNIT) .GT. DEPMINE2(UNIT)) THEN
                                                   ENTRY2(UNIT)=3
                                     DE(UNIT) .NE. 0) THEN
BLUECODE(UNIT) = 1
                        IF (BLUECODE(UNIT)
971
972
973
                                    BYPASS2(UNIT) = 2
974
                 END IF
                 END IF
975
                     END IF
976
                        DELX=TRAVEL*COS(ANGLE(LOC(UNIT)))*10
977 75
                        DELY=TRAVEL*SIN(ANGLE(LOC(UNIT)))*10
978
979
                        BLUEXPOS(UNIT) = BLUEXPOS(UNIT) + DELX
                        BLUEYPOS(UNIT) = BLUEYPOS(UNIT) + DELY
980
981
                 CALL OFFSET (BLUEXPOS, BLUEYPOS, BLUEXOFF1, BLUEYOFF1, LOC,
                                   ANGLE, UNIT, NUMBLUE, CLOCK, KOUNT, BLUECODE, BLUEXOFF2, BLUEYOFF2, BLUEX1POS, BLUEY1POS,
            X
                                   BLUEXOFFO, BLUEYOFFO)
            ¥
                        DISTANCE(UNIT) = DISTANCE(UNIT) + TRAVEL
982
983
             IF (DISTANCE(UNIT) .GE. DIST(LOC(UNIT))) THEN ISTART(UNIT)=ISTART(UNIT)+1
984
                        LOC(UNIT) = AVE(UNIT, ISTART(UNIT))
985
986
                    DISTANCE(UNIT) = 0.0
BLUEXPOS(UNIT) = XNODE(TAIL(LOC(UNIT)))
987
                    BLUEYPOS(UNIT) = YNODE(TAIL(LOC(UNIT)))
988
989
                    GO TO 98
990
               END IF
991 70
                  CONTINUE
992
                GO TO 98
              WRITE(54,931) CLOCK, UNIT, LOC(UNIT), BLUEXPOS(UNIT), BLUEYPOS(UNIT),
993
                  UNITSPD(UNIT), RNG(UNIT)

FORMAT(2X,F4.1, 'UNIT ',13, 'LOC ',13, 'POSITION ',2F6.1, 'SPEED ',F4.0, 'RANGE ',F8.3)
994 931
995 98
                    RETURN
996
                    END
```

```
997
 998
                         INTEGER LOC, UNIT, VEHTYPE, NUMBLUE, VEH, CLOSE, BEHIND INTEGER BLUESTATUS
 999
                         REAL SPEED, TRAVEL, STEP, UNITSPD, AAA
DIMENSION SPEED(10, 80), LOC(10), UNITSPD(10), VEHTYPE(10, 20)
1000
1001
1002
                         DIMENSION BLUESTATUS(10,20)
1003
                                   UNITSPD(UNIT)=160
                  DO 23 VEH=1, NUMBLUE IF(BLUESTATUS(UNIT, VEH)
1004
                  IF(BLUESTATUS(UNIT, VEH) .NE. 0) THEN
IF(SPEED(VEHTYPE(UNIT, VEH), LOC(UNIT)) .LT. UNITSPD(UNIT)) THEN
UNITSPD(UNIT)=SPEED(VEHTYPE(UNIT, VEH), LOC(UNIT))
1005
1006
1007
                             END IF
1008
1009
                      CONTINUE
1010 23
                   IF (BEHIND .EQ. 1 .AND. CLOSE .EQ. UNIT) THEN UNITSPD(UNIT) = UNITSPD(UNIT)/AAA TRAYEL = (UNITSPD(UNIT)/60)*STEP
1011
1012
1013
1014
                          GO TO 51
1015
                   END IF
1016
                          TRAVEL = (UNITSPD(UNIT)/60)*STEP
1017 51
                          RETURN
1018
                             END
```

```
SUBROUTINE OFFSET (BLUEXPOS, BLUEYPOS, BLUEXOFF1, BLUEYOFF1, LOC, ANGLE, UNIT, NUMBLUE, CLOCK, KOUNT, BLUECODE, BLUEXOFF2, BLUEYOFF2, BLUEX1POS, BLUEY1POS,
1019
                    ×
                                          BLUEXOFFO, BLUEYOFFO)
                      INTEGER LOC, UNIT, C, KOUNT, NUMBLUE, BLUECODE
REAL BLUEXIPLT, BLUEYIPLT, ANGLE, BLUEXPOS, BLUEYPOS
REAL XOFFPLT, YOFFPLT, CLOCK
REAL BLUEXOFF1, BLUEXOFF2, BLUEYOFF1, BLUEYOFF2, BLUEXIPOS, BLUEYIPOS
1020
1021
1022
1023
                     REAL BLUEXOFF1, BLUEYOFF2, BLUEYOFF1, BLUEYOFF2, BLUEX1PUS, BLUEY1PUS

REAL BLUEXOFF0, BLUEY0FF0

DIMENSION BLUEXOFF1(20), BLUEY0FF1(20), ANGLE(100), BLUECODE(10)

DIMENSION BLUEXOFF0(20), BLUEY0FF0(20)

DIMENSION BLUEX1POS(10,20), BLUEY1POS(10,20), LOC(10)

DIMENSION BLUEXPOS(20), BLUEYPOS(20), BLUEXOFF2(20), BLUEY0FF2(20)
1024
1025
1026
1027
1028
                         DO 60 C=1, NUMBLUE
1029
                       IF (BLUECODE(UNIT) .EQ. 0) THEN XOFFPLT=BLUEXOFFO(C)
1030
1031
                                YOFFPLT=BLUEYOFFO(C)
1032
                       ELSE IF (BLUECODE(UNIT) .EQ. 1) THEN XOFFPLT=BLUEXOFF1(C) YOFFPLT=BLUEYOFF1(C)
1033
1034
1035
1036
                       ELSE IF (BLUECODE(UNIT) .EQ. 2) THEN
1037
                               XOFFPLT=BLUEXOFF2(C)
1038
                               YOFFPLT=BLUEYOFF2(C)
1039
                       END IF
1040
                         BLUEX1POS(UNIT,C)=BLUEXPOS(UNIT)+(XOFFPLT*COS(ANGLE(LOC(UNIT)))
                         +YOFFPLT*SIN(ANGLE(LOC(UNIT)))

BLUEY1POS(UNIT,C)=BLUEYPOS(UNIT)+(-XOFFPLT*SIN(ANGLE(LOC(UNIT)))
1041
                                                             +YOFFPLT*COS(ANGLE(LOC(UNIT)))
1042 60
                         CONTINUE
```

1043 RETURN 1044 END

#### \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DETECTION \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
SUBROUTINE REDDETECT (REDXPOS, REDYPOS, BLUEXPOS, BLUEYPOS,
1045
                   ×
                                                BLUEX1POS, BLUEY1POS, MUNIT, REDENGAGE, BLUESTATUS,
                                                ANGLE, UNIT, UNITSPD, CLOCK, LOC, CV, NUMRED, NUMBLUE, REDX, REDY, RED, RPLOOK, REDSTATUS, DSEED, VEHTYPE, REDDETECT1, REDDETECT2, ELEMENT, POSITION, TAU,
                   ×
                   ¥
                   ¥
                                                RVEHTYP, BLUECODE, RMAX)
                            INTEGER UNIT, LOC, NUMRED, RED, REDSTATUS, VEHTYPE, REDENGAGE INTEGER REDDETECT1, REDDETECT2, ELEMENT, POSITION, NUNIT INTEGER BLUESTATUS, RVEHTYP, BLUECODE REAL REDXPOS, REDYPOS, BLUEXPOS, BLUEYPOS REAL BLUEXIPOS, BLUEYIPOS, ANGLE, UNITSPD REAL CLOCK, CV, REDX, REDY, HEIGHT, TAU, DENOM, RPLOOK, REDPDET REAL RAND, RMAX, RAF, RNGADJ, RNGDET1, RNGDET2, RANGE1, RANGE2
1046
1047
1048
1049
1050
1051
1052
                             REAL×8 DSEED
1053
                                           BLUEXPOS(20), BLUEYPOS(20), LOC(10), UNITSPD(10), CV(10)
BLUEX1POS(10,20), BLUEY1POS(10,20), ANGLE(100)
RED(30), REDXPOS(30), REDYPOS(30), RPLOOK(10,30)
RAND(10), REDSTATUS(30), RMAX(30), TEMP(30)
                       DIMENSION
1054
1055
                       DIMENSION
1056
                       DIMENSION
                       DIMENSION
1057
                                            VEHTYPE(10,20), HEIGHT(20), RAF(8), REDENGAGE(100)
REDDETECT1(30), REDDETECT2(30), RNGDET1(30), RNGDET2(30)
BLUESTATUS(10,20), RVEHTYP(30), BLUECODE(10)
1058
                       DIMENSION
1059
                       DIMENSION
1060
                       DIMENSION
1061
                             HEIGHT(1)=2.4
                             HEIGHT(2)=2.4
1062
1063
                             HEIGHT(3)=2.4
                            HEIGHT(4)=2.4
1064
                            HEIGHT(5)=2.4
1065
                              RNGDET1(ELEMENT)=300.0
1066
1067
                              RANGE1 = 0.0
                               RNGDET2(ELEMENT)=500.0
1068
1069
                              RANGE2=0.0
                              REDDETECT1(ELEMENT) = 0
1070
1071
                              REDDETECT2(ELEMENT)=0
                                    DO 39 I=1,3
1072
1073
                                          RAF(I) = .000
1074 39
                            CONTINUE
                                          RAF(4) = .10
1075
                                          RAF(5) = .10
1076
```

```
LOOP 77 NUMBER OF BLUE UNITS
1077
                 DO 77 UNIT=1, NUNIT
              IF (BLUECODE(UNIT) .EQ. 0 ) THEN

CY(UNIT) = 0
1078
1079
1080
                         GO TO 66
1081
              END IF
                      OBSVECX=REDX-BLUEXPOS(UNIT)
OBSVECY=REDY-BLUEYPOS(UNIT)
DIRVECX=COS(ANGLE(LOC(UNIT)))
1082
1083
1084
1085
                      DIRVECY=SIN(ANGLE(LOC(UNIT)))
                    OBSVECL=SQRT((OBSVECX**2)+(OBSVECY**2))
CVANGLE=ACOS(((OBSVECX*DIRVECX)+(OBSVECY*DIRVECY))/OBSVECL)
1086
1087
                    CV(UNIT) = (UNITSPD(UNIT)*1000/3600)*SIN(CVANGLE)
1088
          LOOP 79 NUMBER OF BLUE ELEMENTS IN EACH UNIT DO 79 POSITION=1, NUMBLUE
1089 66
                                 IF (BLUESTATUS (UNIT, POSITION) . EQ. 0) THEN
1090
1091
                                           GO TO 79
                                 END IF
1092
1093
                           CALL GGUBS(DSEED, 3, RAND)
                 RANGE=(SQRT(((REDXPOS(ELEMENT)-BLUEX1POS(UNIT,POSITION))**2)+
1094
                    ((REDYPOS(ELEMENT)-BLUEY1POS(UNIT, POSITION))**2)))/10
IF (BLUECODE(UNIT) .EQ. 0) THEN
1095
               RNGAPP=(RANGE*2.8)/(((HEIGHT(VEHTYPE(UNIT, POSITION))/2)*RAND(1))
1096
                                                +(HEIGHT(VEHTYPE(UNIT, POSITION))/4))
1097
                        GO TO 55
                    END IF
1098
1099
               RNGAPP=(RANGE*2.8)/((HEIGHT(VEHTYPE(UNIT, POSITION))/2)*RAND(1))
                                                +(HEIGHT(VEHTYPE(UNIT, POSITION))/2))
1100 55
                      IF (RANGE .LT.
                                        .250) THEN
                                REDPDET=1.0
1101
1102
                              GO TO 34
                      END IF
1103
                            DENOM=1.453+(TAU*(.05978+(2.188*RNGAPP*RNGAPP)-
1104
                                         5038×CV(UNIT)))
            ¥
                            DETRATE=RPLOOK(UNIT, ELEMENT)*(-.003+(1.088/DENOM))
1105
1106
                       IF (DETRATE .LE. 0.0) THEN
                       DETRATE = 0.0
ELSE IF (DETRATE .GT. 5.0) THEN
1107
1108
1109
                        REDPDET=1.0
1110
                        GO TO 34
                            REDPDET=1-EXP(-DETRATE*30)
             IF (REDENGAGE(((NUMBLUE*(UNIT-1))+POSÍTION)) .GE. 2) THEN GO TO 79
1113 34
1114
                         END IF
1115
                 IF (REDPDET .GE. RAND(2)) THEN IF (RANGE .LE. RMAX(ELEMENT)) THEN
1116
1117
```

```
RNGADJ=(RANGE/(1-(RAND(3)/2))) + RAF(VEHTYPE(UNIT, POSITION))
1118
                         IF (RNGADJ .LT. RNGDET1(ELEMENT)) THEN RNGDET1(ELEMENT) = RNGADJ
1119
1120
1121
                                   RANGE1 = RANGE
1122
1123
                                     REDSTATUS(ELEMENT) = 2
                          REDDETECT1(ELEMENT)=(NUMBLUE*(UNIT-1))+POSITION
                         ELSE IF (RNGADJ .LT. RNGDET2(ELEMENT)) THEN
IF(RVEHTYP(ELEMENT) .EQ. 1) THEN
RNGDET2(ELEMENT) = RNGADJ
1124
1125
1126
1127
                                   RANGE2=RANGE
                                 REDSTATUS(ELEMENT) = 2
REDDETECT2(ELEMENT) = (NUMBLUE*(UNIT-1))+POSITION
1128
1129
1130
                               END IF
                         END IF
1131
                    END IF
1132
1133
              END IF
1134 79
1135 77
                CONTINUE
                CONTINUE
                  IF (RNGDET1(ELEMENT) .LT. 200.0) THEN
1136
1137
                REDENGAGE(REDDETECT1(ELEMENT))=REDENGAGE(REDDETECT1(ELEMENT))+1
1138
                  END IF
                  IF (RNGDET2(ELEMENT) .LT. 200.0) THEN
1139
                REDENGAGE(REDDETECT2(ELEMENT))=REDENGAGE(REDDETECT2(ELEMENT))+1
1140
1141
                    END IF
                  RETURN
1142
1143
                    END
      SUBROUTINE BLUEDETECT (REDXPOS, REDYPOS, BLUEX1POS, BLUEY1POS, BLUEENGAGE, BLUESTATUS, REDSTATUS, DSEED, UNIT, CLOCK, NUMRED,
1144
                          BLUEDETECTI, ELEMENT, POSITION, TAU, RVEHTYP, RHEIGHT, RRAF,
                          BLUERMAX)
                    INTEGER UNIT, NUMRED, REDSTATUS
1145
                    INTEGER BLUEDETECT1, ELEMENT, POSITION
1146
                    INTEGER BLUESTATUS, RVEHTYP, BLUEENGAGE
1147
                    REAL REDXPOS, REDYPOS
1148
                    REAL BLUEXIPOS, BLUEYIPOS, DETRATE
REAL CLOCK, RHEIGHT, TAU, DENOM, RNGAPP, RANGE, BLUEPDET
REAL RUND, BLUERMAX, RRAF, RNGADJ, RNGDET, RANGE1
1149
1150
1151
1152
                    REAL*8 DSEED
                              BLUEX1POS(10,20),BLUEY1POS(10,20)

REDXPOS(30),REDYPOS(30)

RUND(10),REDSTATUS(30),BLUERMAX(10,20)

BLUEDETECT1(10,20),RNGDET(10,20),BLUEENGAGE(30)

BLUESTATUS(10,20),RVEHTYP(30),RRAF(4),RHEIGHT(30)
1153
                DIMENSION
1154
                DIMENSION
1155
                DIMENSION
                DIMENSION
1156
1157
                DIMENSION
1158
                RNGDET(UNIT, POSITION) = 300
1159
                RANGE1=0.0
1160
                BLUEDETECT1(UNIT, POSITION) = 0
1161
                DO 29 ELEMENT=1, NUMRED
```

```
1162
                     IF(REDSTATUS(ELEMENT) .EQ. 0) THEN
1163
                           GO TO 29
1164
                      END IF
1165
                         CALL GGUBS(DSEED, 3, RUND)
                RANGE=(SQRT(((REDXPOS(ELEMENT)-BLUEX1POS(UNIT, POSITION))**2)+
1166
                        ((REDYPOS(ELEMENT)-BLUEY1POS(UNIT, POSITION))**2)))/10
1167
              RNGAPP=(RANGE*2.8)/(((RHEIGHT(ELEMENT)/2)*RUND(1))
                                           +(RHEIGHT(ELEMENT)/4))
                    IF (RANGE .LT. .250) THEN
1168
                             BLUEPDET=1.0
1169
1170
                            GO TO 14
                    END IF
1171
1172
                          DENOM=1.453+(TAU*(.05978+(2.188*RNGAPP*RNGAPP)))
1173
                          DETRATE=.75*(-.003+(1.088/DENOM))
                     IF (DETRATE .LE. 0.0) THEN
DETRATE = 0.0
ELSE IF (DETRATE .GT. 5.0) THEN
BLUEPDET=1.0
1174
1175
1176
1177
                      GO TO 14
1178
                     END IF
1179
1180
                         BLUEPDET=1-EXP(-DETRATE*30)
1181 14
             IF (BLUEENGAGE(ELEMENT) .GE. 4) THEN
1182
                        GO TO 29
1183
1184
               IF (BLUEPDET .GE. RUND(2)) THEN
                     IF (RANGE .LE. BLUERMAX(UNIT, POSITION)) THEN
1185
1186
                 RNGADJ=(RANGE/(.25+(RUND(3)/4)) + RRAF(RVEHTYP(ELEMENT)))
1187
                 IF (RNGADJ .LT. RNGDET(UNIT, POSITION)) THEN
1188
                             RNGDET(UNIT, POSITION) = RNGADJ
1189
                              RANGE1=RANGE
                      BLUESTATUS(UNIT, POSITION) = 2
BLUEDETECT1(UNIT, POSITION) = ELEMENT
1190
1191
1192
                END IF
1193
                END IF
1194
               END IF
1195 29
             CONTINUE
1196
             IF (RNGDET(UNIT, POSITION) .LT. 200.0) THEN BLUEENGAGE(BLUEDETECT1(UNIT, POSITION))=
1197
                           BLUEENGAGE(BLUEDETECT1(UNIT, POSITION))+1
1198
               END IF
1199
                RETURN
1200
                  END
```

```
1201
               SUBROUTINE REDFIRE(REDSTATUS, ELEMENT, REDENGAGE, BLUESTATUS, UNIT,
                                POSITION, NUMBLUE, REDXPOS, REDYPOS, NUNIT, VEHTYPE,
                                REDDETECT1, REDDETECT2, BLUEX1POS, BLUEY1POS, DSEED, CLOCK, RVEHTYP, RPHITS, RPHITM, RPKILL, DFKILL, REP, DFTYPE)
              ×
              ×
1202
1203
1204
               INTEGER REDSTATUS, ELEMENT, REDENGAGE, BLUESTATUS, UNIT, POSITION
               INTEGER NUMBLUE, SHOT, REDDETECT1, REDDETECT2, LOOP, NUNIT, RVEHTYP INTEGER VEHTYPE, DFKILL, REP, DFTYPE
               REAL RANGE, REDXPOS, REDYPOS, BLUEX1POS, BLUEY1POS
1205
1206
1207
               REAL PHIT, PKILL, RNDNUM, CLOCK, RPHITS, RPHITM, RPKILL
               REAL×8 DSEED
               DIMENSION REDSTATUS(30), REDENGAGE(100), REDXPOS(30), DFKILL(100)
1208
1209
1210
               DIMENSION REDDETECT1(30), REDDETECT2(30), REDYPOS(30), VEHTYPE(10,20)
DIMENSION BLUESTATUS(10,20), BLUEX1POS(10,20), BLUEY1POS(10,20)
1211
1212
               DIMENSION RNDNUM(10), RVEHTYP(30), RPHITS(10), RPHITM(10), RPKILL(10)
               DIMENSION DFTYPE(10)
1213
                   REDSTATUS(ELEMENT)=1
                   SHOT=REDDETECT1(ELEMENT)
1214
                       LOOP = 1
GO TO 67
1215
1216
1217 97
                   SHOT = REDDETECT2(ELEMENT)
1218
                         LOOP = 2
                       IF (SHOT .EQ. 0) THEN GO TO 87 ELSE IF (SHOT .GT. 0)
1219 67
1220
1221
                                           .GT. 0) THEN
1222
1223
1224
                          DO 27 I=1, NUNIT
IF (SHOT .LE. I*NUMBLUE) THEN
                             UNIT = I
1225
1226
                             POSITION = SHOT - ((UNIT-1)*NUMBLUE)
                             GG TO 88
1227
                              END IF
1228 27
                          CONTINUE
                END IF

RANGE=(SQRT(((REDXPOS(ELEMENT)-BLUEX)POS(UNIT,POSITION))**2)+
1229
1230 88
                             ((REDYPOS(ELEMENT)-BLUEY1POS(UNIT, POSITION))**2))/10
1231
1232
1233
1234
1235
1236
1237
1238
1239
                IF (RVEHTYP(ELEMENT) .EQ. 2) THEN
                    IF(RANGE .LT. .250) THEN
PHIT = RPHITM(5)
                      PKILL = RPKILL(5)
ELSE IF (RANGE .LT. 1.000) THEN
PHIT = RPHITM(6)
                          PKILL = RPKILL(6)
                      ELSE IF (RANGE .LT. 1.500) THEN
PHIT = RPHITM(7)
PKILL = RPKILL(7)
1240
                      ELSE IF (RANGE .LT.
PHIT = RPHITM(8)
                                                 2.500) THEN
1241
1242
                          PKILL = RPKILL(8)
1243
                      ELSE IF (RANGE .LT. 4.400) THEN
PHIT = RPHITM(9)
1244
1245
1246
                          PKILL = RPKILL(9)
                      END IF
1247
1248
                    GO TO 76
                    END IF
1249
1250
                    IF(RANGE .LT. .500) THEN
```

```
1251
                           PHIT = RPHITM(1)
                       PKILL = RPKILL(1)

ELSE IF (RANGE LT. 1.000) THEN
PHIT = RPHITM(2)
 1252
1253
 1254
1255
1256
1257
                       PKILL = RPKILL(2)
ELSE IF (RANGE LT. 2.000) THEN
PHIT = RPHITM(3)
 1258
1259
                      PKILL = RPKILL(3)
ELSE IF (RANGE .LT. 3.300) THEN
PHIT = RPHITM(4)
 1260
 1261
                           PKILL = RPKILL(4)
 1262
                       END IF
                   CALL GGUBS(DSEED, 2, RNDNUM)

IF (BLUESTATUS(UNIT, POSITION) .EQ. 0) GO TO 87

IF (RNDNUM(1) .LE. PHIT) THEN

IF (RNDNUM(2) .LE. PKILL) THEN

BLUESTATUS(UNIT, POSITION) = 0
 1263 76
 1264
 1265
1266
 1267
 1268
                                           DFKILL(REP)=DFKILL(REP)+1
 1269
                    DFTYPE(VEHTYPE(UNIT, POSITION))=DFTYPE(VEHTYPE(UNIT, POSITION))+1
1270
1271
                                      REDENGAGE((NUMBLUE*(UNIT-1))+POSITION) = 2
               WRITE(54,747) CLOCK, ELEMENT, RANGE, UNIT, POSITION,

VEHTYPE(UNIT, POSITION)

FORMAT(1X, F5.1, 'RED', I2, 'RANGE', F6.3,

KILLED BLUE', 213, 'VEHTYPE', I2, 'BBBBBBBBBBB')

GO TO 87

END IF
              ×
1272 747
1273
1274
1275
                            END IF
1276
                    REDENGAGE((NUMBLUE*(UNIT-1))+POSITION) =
                               REDENGAGE((NUMBLUE*(UNIT-1))+POSITION) - 1
1277 87
                 IF (LOOP .EQ. 1) THEN
                   GO TO 97
1278
1279
1280
                 END IF
                          RETURN
1281
                            END
       1282
               SUBROUTINE BLUEFIRE(REDSTATUS, ELEMENT, BLUEENGAGE, BLUESTATUS, UNIT,
                                POSITION, REDXPOS, REDYPOS, RVEHTYP,
                                BLUEDETECT1, BLUEX1POS, BLUEY1POS, DSEED,
               CLOCK, BPHITS, BPKILL)
INTEGER REDSTATUS, ELEMENT, BLUEENGAGE, BLUESTATUS, UNIT, POSITION
1283
1284
               INTEGER BLUEDETECT1, RVEHTYP
               REAL RANGE, REDXPOS, REDYPOS, BLUEX1POS, BLUEY1POS
REAL PHIT, PKILL, RNDNUB, CLOCK, BPHITS, BPKILL
1285
1286
1287
               REAL*8 DSEED
1288
               DIMENSION REDSTATUS(30), BLUEENGAGE(30), REDXPOS(30)
1289
               DIMENSION BLUEDETECT1(10,20), REDYPOS(30)
1290
               DIMENSION BLUESTATUS(10,20), BLUEX1POS(10,20), BLUEY1POS(10,20)
1291
               DIMENSION RNDNUB(10), RVEHTYP(30), BPHITS(10), BPKILL(10)
1292
1293
1294
                   BLUESTATUS(UNIT, POSITION)=1
                   ELEMENT = BLUEDETECT1 (UNIT, POSITION)
                 RANGE=(SQRT(((REDXPOS(ELEMENT)-BLUEX1POS(UNIT, POSITION))**2)+
                             ((REDYPOS(ELEMENT)-BLUEY1POS(UNIT, POSITION))**2)))/10
                  IF (RVEHTYP(ELEMENT) .EQ. 7 IF(RANGE .LT. .500) THEN
1295
                                                     2) THEN
1296
```

Ī

```
1297
1298
1299
1300
                             PHIT = BPHITS(5)
                        PKILL = BPKILL(5)
ELSE IF (RANGE .LT. 1.000) THEN
PHIT = BPHITS(6)
                        PHIL = BPKILL(6)

ELSE IF (RANGE .LT. 2.000) THEN
PHIT = BPHITS(7)
1301
1302
1303
                        PKILL = BPKILL(7)

ELSE IF (RANGE .LT. 3.300) THEN
PHIT = BPHITS(8)
1304
1305
1306
1307
                             PKILL = BPKILL(8)
1308
                         END IF
                  GO TO 74
END IF
1309
1310
                       IF(RANGE .LT. .500) THEN
    PHIT = BPHITS(1)
    PKILL = BPKILL(1)
1311
1312
1313
                        ELSE IF (RANGE .LT. 1.000) THEN
PHIT = BPHITS(2)
PKILL = BPKILL(2)
1314
1315
1316
                        ELSE IF (RANGE .LT. 2.000) THEN
PHIT = BPHITS(3)
PKILL = BPKILL(3)

ELSE IF (RANGE .LT. 3.300) THEN
PHIT = BPHITS(4)
PKILL = BPKILL(4)
1317
1318
1319
1320
1321
1322
                     CALL GGUBS(DSEED,2,RNDNUB)

IF (REDSTATUS(ELEMENT) .EQ. 0) GO TO 83

IF (RNDNUB(1) .LE. PHIT) THEN

IF (RNDNUB(2) .LE. PKILL) THEN

REDSTATUS(ELEMENT) = 0
1324 74
1325
1326
1327
1328
                1329
1330
1331 777
1332
                                                 GO TO 83
                                           END IF
1333
1334
                               END IF
                         BLUEENGAGE(ELEMENT) = BLUEENGAGE(ELEMENT)-1
1335
1336 83
                             RETURN
                              END
```

## APPENDIX C

## DATA FILES TO SUPPORT THE PROGRAM

This appendix contains the data files used in the program listed in Appendix B. Most data files can be expanded or reduced as long as the appropriate parameters are changed in the program.

The network is supported by the MINEMET data file shown below. The first column is the arc number, the second column is the node number of the tail of the arc while the third column is the node number of the head of the arc. The fourth column is the distance associated with the arc while the last column is the heading of the arc in radians.

| Tamu                               | 15                               | the ne                                                                                                                                       | eading or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the a                                                                                                                    |
|------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1                                  | 1                                | 2                                                                                                                                            | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.616                                                                                                                    |
| ž                                  | ī                                | र                                                                                                                                            | ₹ 1₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 080                                                                                                                    |
| 7                                  | 5                                | 17                                                                                                                                           | 3.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.707                                                                                                                    |
| Ş                                  | - 4                              | 13                                                                                                                                           | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.072                                                                                                                    |
| 4                                  | 3                                | 4                                                                                                                                            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.107                                                                                                                    |
| 5                                  | 3                                | 5                                                                                                                                            | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.499                                                                                                                    |
| Ã                                  | ă                                | 7                                                                                                                                            | 1 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 633                                                                                                                    |
| 7                                  | -                                | ż                                                                                                                                            | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.033                                                                                                                    |
| 6                                  | 2                                | 2<br>3<br>13<br>4<br>5<br>7<br>6<br>8                                                                                                        | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.301                                                                                                                    |
| ō                                  | - (                              | ō                                                                                                                                            | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.141                                                                                                                    |
| 9                                  | 6                                | 9                                                                                                                                            | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.322                                                                                                                    |
| 10                                 | 8                                | 11                                                                                                                                           | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.141                                                                                                                    |
| 11                                 | ğ                                | า้ก                                                                                                                                          | 0 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 056                                                                                                                    |
| 12                                 | ıń                               | 22                                                                                                                                           | 1 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 064                                                                                                                    |
| 1.5                                | 10                               | 12                                                                                                                                           | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.004                                                                                                                    |
| 12                                 | ΪŢ                               | 12                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.141                                                                                                                    |
| 14                                 | 12                               | 26                                                                                                                                           | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                    |
| 15                                 | 13                               | 14                                                                                                                                           | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.064                                                                                                                    |
| 16                                 | 14                               | 19                                                                                                                                           | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.704                                                                                                                    |
| 17                                 | īá                               | 2ń                                                                                                                                           | ก็สา                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 704                                                                                                                    |
| 10                                 | 12                               | 16                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.707                                                                                                                    |
| 10                                 | 14                               | 13                                                                                                                                           | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.005                                                                                                                    |
| 19                                 | 15                               | 16                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.005                                                                                                                    |
| 20                                 | 16                               | 17                                                                                                                                           | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.464                                                                                                                    |
| 21                                 | 17                               | 18                                                                                                                                           | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.373                                                                                                                    |
| 22                                 | 18                               | 23                                                                                                                                           | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 785                                                                                                                    |
| 22                                 | 27                               | 24                                                                                                                                           | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.705                                                                                                                    |
| 23                                 | 23                               | 27                                                                                                                                           | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.765                                                                                                                    |
| 24                                 | 24                               | 25                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.785                                                                                                                    |
| 25                                 | 20                               | 21                                                                                                                                           | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.675                                                                                                                    |
| 26                                 | 21                               | 22                                                                                                                                           | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.644                                                                                                                    |
| 27                                 | 22                               | 26                                                                                                                                           | n 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 927                                                                                                                    |
| 28                                 | 25                               | 26                                                                                                                                           | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 914                                                                                                                    |
| 1123456789011234567890112345678901 | 11123345768901123494567834012567 | 11<br>10<br>22<br>12<br>14<br>12<br>16<br>17<br>18<br>33<br>45<br>12<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 | or<br>923101.2641<br>10.26541<br>10.26541<br>10.275641<br>10.29301<br>10.275641<br>10.29301<br>10.275641<br>10.29301<br>10.275641<br>10.29301<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>10.2941<br>1 | T55.551.000.60.60.000.855.555.1000.60.60.000.855.60.7786.6421.644.044.655.60.7786.6421.6421.6421.6421.6421.6421.6421.642 |
| 29                                 | 26                               | 21                                                                                                                                           | U./U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.819<br>0.927<br>0.000                                                                                                  |
| <b>5</b> 0                         | 27                               | 28                                                                                                                                           | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.927                                                                                                                    |
| 31                                 | 28                               | 29                                                                                                                                           | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.927                                                                                                                    |
| -                                  |                                  |                                                                                                                                              | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                          |

The NODLOC file is the physical location of each node in the network. The first column is the node, the second is the x coordinate while the third is the y coordinate. If the x and y coordinate were put together they would represent the standard six digit grid coordinate system.

1 583 229
2 606 211
3 613 220
4 616 226
5 624 226
6 6 635 230
7 631 237
8 635 236
9 639 231
10 648 229
11 647 232
12 657 232
13 618 203
14 627 201
15 636 197
16 643 195
17 649 198
18 650 205
19 640 214
20 647 218
21 652 222
22 660 228
23 653 212
24 658 217
25 665 224
26 663 232
27 669 229
28 672 233
29 672 233

The Avenue Data is used to support the Movement network. Each value is an arc number, with each avenue represented by a column of arcs. The last arc in the network, arc 31 is an arc with no speed associated with it, so if a unit reaches that arc (which is past the objective) it would essentially remain in position unit1 the arrival of the rest of the units.

| : ar | LIVAI                                                            |                                                 | ne r                                                           |
|------|------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|
| 2    | 2<br>5<br>7<br>9<br>11<br>12<br>27<br>29<br>30<br>31<br>31<br>31 | 135<br>167<br>167<br>2267<br>230<br>331<br>3131 | 15<br>15<br>18<br>19<br>20<br>21<br>22<br>24<br>28<br>29<br>30 |
| 4    | 5                                                                | _ 3                                             | _ 3                                                            |
| 6    | 7                                                                | 15                                              | 15                                                             |
| 8    | 9                                                                | 16                                              | 18                                                             |
| 10   | 11                                                               | 17                                              | 19                                                             |
| 13   | 12                                                               | 25                                              | 20                                                             |
| 14   | 27                                                               | 26                                              | 21                                                             |
| 29   | 29                                                               | 27                                              | 22                                                             |
| 30   | 30                                                               | 29                                              | 23                                                             |
| 31   | 31                                                               | 30                                              | 24                                                             |
| 31   | 31                                                               | 31                                              | 28                                                             |
| 31   | 31                                                               | 31                                              | 29                                                             |
| 31   | 31                                                               | 31                                              | 30                                                             |

The SPEED file represents the speeds that the various types of equipment in the unit are able to maintain over the various arcs. The speeds are affected by terrain, roads, cities

This file is used to input the type and order of the equipment in each ofthe units. The only three codes used are: I for an MI, 2 for a mineplow tank, and three for a mineroller tank. The vehicles can be placed in any order and the units do not have to be configured the same, either in the type of equipment or the order in which it is entered.

2 2 2 2
2 2 2 2
3 3 3 3
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1

The following is an example of the file that support the formations. The offsets in the x and y directions are given in hundreds of meters, therefore the value -2.50 would be two hundred and fifty meters in either the minus x direction if it was in the first column or the minus y direction if it was in the second column.

-5.00 .00 -7.00 .00 -6.50 .50 -6.50 -.50 -6.00 .00 -0.50 4.00 -0.50 -4.00 -1.00 -3.50 -0.50 -3.00 -0.50 3.00 -0.50 3.50 -0.50 3.50 -0.50 3.50 The data used in this file represents the blue probability of hitting a target given a range band and then the probability of killing the target given a hit. The first column is the hit probability while the second is the kill probability.

X.XX X.XX

The REDPOSN file represents the physical location of each red element in the unit. The first column is the element number, the secon is the x coordinate, and the third is the y coordinate. If the two coordinates were put together they would represent a standard eight digit grid coordinate.

1 666.5 228.0
2 668.0 228.5
3 665.5 230.0
4 663.5 229.5
5 663.5 230.5
6 662.0 231.5
7 662.0 232.5
8 661.0 235.0
9 661.5 235.0
10 663.5 233.0
11 667.0 229.5
12 665.5 231.0
13 663.5 232.0

Ē.,

The RPLOOK file is used in the red DETECTION subroutine and represents the probability that the observer is looking in the direction of the target, in this case each of the four avenues of approach used by the blue forces. They are user input and the probability of looking in all directions does not have to add to 1.

0.10 0.10 0.35 0.40
0.10 0.10 0.35 0.40
0.10 0.10 0.35 0.40

 0.10
 0.10
 0.35
 0.40

 0.10
 0.10
 0.35
 0.40

 0.10
 0.10
 0.35
 0.40

 0.10
 0.25
 0.40
 0.20

 0.10
 0.25
 0.40
 0.20

 0.10
 0.25
 0.40
 0.20

 0.40
 0.40
 0.10
 0.05

 0.40
 0.40
 0.10
 0.05

 0.40
 0.40
 0.10
 0.5

 0.25
 0.25
 0.25
 0.25

 0.05
 0.10
 0.40
 0.40

 0.05
 0.10
 0.40
 0.40

 0.30
 0.40
 0.15
 0.10

The RVEHTYP file supports the red unit in terms of type of equipment, height, range adjustment factor and maximum effective range. The first column is the vehicle type, with a 1 representing a tank, while a 2 represents a BMP. Column 2 is the height of the vehicle while column 3 is the range adjustment factor (RAF) used in the simulation. The RAF represents the range difference that would be required between a tank and a BMP before the the BMP would be engaged. The last column is the maximum effective range of the weapon system.

1 2.3 0 3.0
1 2.3 0 3.0
1 2.3 0 3.0
1 2.3 0 3.0
1 2.3 0 3.0
1 2.3 0 3.0
1 2.3 0 3.0
2 2.1 0.4 4.0
2 2.1 0.4 4.0
2 2.1 0.4 4.0
2 2.1 0.4 4.0

## LIST OF REFERENCES

- 1. Foss, Christopher F., "Mines in Land Warfare A Defense Survey", Defence Digest, Vol 10, Nr 4, 1979.
- 2. Department of the Army, FM 5-100, Engineer Combat Operations, March 1979.
- 3. Department of the Army, TC 7-24, Antiarmor Tactics and Techniques for Mechanized Infantry, September 1975.
- 4. U.S. Army Armor and Engineer Board, Concept Evaluation (Phase II) of Total Countermine System, December 1983.
- 5. Department of the Army, FM 90-7, Obstacles, December 1977.
- 6. U.S. Army Armor Center, Fact Sheet, <u>Track-Width</u>, <u>Mine</u> Clearing Roller, Fort Knox, Kentucky, 31 March 1987.
- 7. Department of the Army, FM 71-2, The Tank and Mechanized Infantry Battalion Task Force, June 1977.
- 8. Ogilvie, Malcolm L., Jr., The Development of Measures of Effectiveness for a Countermine System, Master's Thesis, Naval Postgraduate School, Monterey, California, December 1979.
- Directorate of Combat Developments, Material & Logistics Division, Information Paper, <u>Track Width</u> <u>Mine Clearing (TWMC) Blade (Plow)</u>, Fort Knox, <u>Kentucky</u>, 9 November 1987.
- 10. Bolkhovskiy, B. and Mikhaylets, V., "Operation of a Minesweeper", Tekhnika I Vooruzheniye (TVOOB), 1984, Nr 5, 26.
- 11. Directorate of Combat Developments, Material & Logistics Division, Fact Sheet, To Provide Information on Tank Mounted Countermine Equipment, Fort Knox, Kentucky, 17 September 1986.
- 12. Hartman, James K., "Lecture Notes in High Resolution Combat Modelling", Unpublished Notes, 1985.
- 13. Reuss, Gregg, "An Assault Aircraft Combat Effectiveness Model as a Semi-Markov Process", Draft Master's Thesis, Naval Postgraduate School, Monterey, California, June 1988 (estimated completion date September 1988).

## INITIAL DISTRIBUTION LIST

17.00

|     |                                                                                                                        | No. | Copies |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 1.  | Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22304-6145                                   |     | 2      |
| 2.  | Library, Code 0142<br>Naval Postgraduate School<br>Monterey, CA 93943-5002                                             |     | 2      |
| 3.  | Deputy Undersecretary of the Army<br>for Operations Research<br>Room 2E261, Pentagon<br>Washington, D.C. 20310         |     | 2      |
| 4.  | Director<br>U.S. Army TRADOC Analysis Center<br>White Sands Missile Range, NM 88002                                    |     | 1      |
| 5.  | Commander<br>U.S. Army TRADOC Analysis Center<br>Attn: Mr. Reed Davis<br>Fort Leavenworth, KS 66027                    |     | 1      |
| 6.  | Director<br>Attn: Mr. E.B. Vandiver III<br>U.S. Army Concepts Analysis Agency<br>Bethesda, MD 20814                    |     | 1      |
| 7.  | Bell Hall Library<br>U.S. Army Combined Arms Center<br>Fort Leavenworth, KS 66027                                      |     | 1      |
| 8.  | Dr. Samuel H. Parry, Code55Py<br>Department of Operations Research<br>Naval Postgraduate School<br>Monterey, CA 93940  |     | 5      |
| 9.  | LTC Bard K. Mansager, Code55Ma<br>Department of Operations Research<br>Naval Postgraduate School<br>Monterey, CA 93940 |     | 2      |
| 10. | Dr. Arthur Schoenstadt, Code53Zh<br>Department of Mathematics<br>Naval Postgraduate School<br>Monterey, CA 93940       |     | 1      |

| 11. | Director Requirements & Programs Director Headquarters TRAC Attn: ATRC-RP (COL Brinkley) Fort Monroe, VA 23651-5143       | 1 |
|-----|---------------------------------------------------------------------------------------------------------------------------|---|
| 12. | Department of Operations Research<br>Attn: MAJ Dan Reyen<br>AFIT/ENS<br>Wright Patterson AFB, OH 45433                    | 1 |
| 13. | Commander U.S. Army TRADOC Analysis Command Attn: ATRC Fort Leavenworth, KS 66027-5200                                    | 3 |
| 14. | Director TRAC-FLVN Attn: ATRC-F (Dr. LaRocque) Fort Leavenworth, KS 66027-5200                                            | 1 |
| 15. | Director TRAC-WSMR Attn: ATRC-W (Dr. Collier) White Sands Missile Range, NM 88002-5502                                    | 1 |
| 16. | Director TRAC-LEE Attn: ATRC-LC Fort Lee, VA 23801-6000                                                                   | 1 |
| 17. | Director Research Directorate Attn: ATRC-RD (MAJ Welo) White Sands Missile Range, NM 88002-5502                           | 1 |
| 18. | Commander U.S. Army TRADOC Analysis Command Attn: ATRC-ZD (Mr. Bauman) Fort Leavenworth, KS 66027-5200                    | 2 |
| 19. | Chief<br>TRAC-MTRY<br>Attn: MAJ H. Fujio<br>Naval Postgraduate School<br>Monterey, CA 93943-0692                          | 1 |
| 20. | Director U.S. Army Material Systems Analysis Activity Attn: AMXSY-GC (L. Meredith) Aberdeen Proving Ground, MD 21005-5071 | 1 |

| 21. | Commandant<br>USAARMS                                                         | 1 |  |
|-----|-------------------------------------------------------------------------------|---|--|
|     | Attn: ATSB-CD-SD (MAJ Collier) Fort Knox, KY 40121                            |   |  |
| 22. | CPT Thomas D. Pijor<br>525 A Merritt Road<br>West Point, NY 10996             | 3 |  |
| 23. | Mary E. Geer, Code 30<br>Naval Postgraduate School<br>Monterey, CA 93943-5000 | 1 |  |